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The discrete logarithm problem (DLP)

Asymmetric cryptography relies on the hardness of either factorization (RSA) or the
discrete logarithm problem.

—> Used in Diffie-Hellman, El-Gamal, (EC)DSA, etc

Definition
Given a finite cyclic group G, a generator g € G and a target h € G, find x such that
h=g*.

Commonly used groups: prime finite fields I, = (Z/pZ)*, finite fields [F5n, elliptic
curves over finite fields E(FFp) ...

' Groups G for which DLP is hard |
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Examples in the wild

Widely deployed protocols base their security on the hardness of DLP on a group G.

Ephemeral Diffie Hellman

Technical Details l
Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 128 bit keys, TLS 1.2)

An interesting example: pairing-based protocols!

Fig from Diego Aranha
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Pairing-based cryptography

What is a cryptographic pairing 7
e G1,Gy: additive groups of prime order £.

e G1: multiplicative group of prime order £.

’ A pairingisamap e: Gy x Gy — Gt

e with bilinearity: Va, b € Z, e(aP, bQ) = e(P, Q)?®,
¢ non-degeneracy: 3P, Q such that e(P, Q) # 1,

e and such that e is efficiently computable (for practicality reasons).

Called symmetric if G; = Go.

4/20



Security of pairing-based protocols

Most of the time, in cryptography:

o G1 = subgroup of £(F,),
e Gy = subgroup of E(Fyn),
o Gt = subgroup of finite field Fl’gn.

Why do we care 7 hundreds of old and many recent protocols built with pairings.
Example: zk-SNARKS (blockchain, Zcash ...)

— Example that uses DLP on both elliptic curves and finite fields.

Question: How to construct a secure pairing-based protocol ?
— Look at DLP algorithms on both sides!
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The discrete logarithm problem in finite fields

o

e Many different algorithms for DLP in [Fpn

e Their complexity depends on the relation
between characteristic p and extension degree
n.
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Useful notation

— Complexity depends on the relation between characteristics p and extension
degree n.

[-notation:

Lpr(Jp, c) = exp((c + o(1))(log(p"))* (log log p")* "),

for 0 < /I, < 1 and some constant ¢ > 0.

For complexities:
e When [, — 0: exp (loglog p”) = log p" Polynomial-time
e When /, — 1: p" Exponential-time

In the middle, we talk about subexponential time.
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Three families of finite fields

Finite field: Fpn, with p = Lpn (Ip, ¢p)

Medium char
| | | |
I 1 1 1 %
0 1 2 1
3 3
IFZ“’Z“ I]:pé‘g |Fplﬁw H:Pl(m

e Different algorithms are used in the different zones.
e Algorithms don't have the same complexity in each zone.
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The L-notation

for Fo with Q = p”

log nf* = Lg(1/3), n= (log p)?
p=Lq(1/3),n~ (logp)

Medium char

p=Lo(2/3)

\

Question: Which area do we focus on ?

14
log log p
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The first boundary case

In this work, we focus on the boundary case p = L,n (1/3), the area between the small
and the medium characteristics.

("aﬁ: x Medium char
| L) | |y
| | 1 14
2 1
1 _
Lp” E,Cp 3

1. Area where pairings take their values.

Why?

2. Many algorithms overlap: — which algorithm has the lowest complexity ?
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Balancing complexities for the security of pairings

Idea: For pairings, we want DLP to be as hard on the elliptic curve side than on the

finite field side.

e choose the area where DLP in finite fields is the most difficult;

L (A (avgsux/é))é)
|3\~ 1

Complexities

‘L (1 (2-(46413&1)%)
T {4 27

2
small p 3 medium p 3 high p

Quasi-Polynomial  FFS MNFS-CM MNFS

e "“balance” complexity on elliptic curves and finite fields:

VP =Lpn (1/3) = p = Lpn (1/3)

Fig. Cécile Pierrot
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Main results of the paper

e Analyse the behaviour of many
algorithms in this area.

e Estimate the security of pairing-based
protocols.

12/20



The index calculus algorithms

Consider a finite field Fn.
Factor basis: F = small set of “ small " elements.
Three main steps:
1. Relation collection: find relations between the elements of F.

2. Linear algebra: solve a system of linear equations where the unknowns are the
discrete logarithms of the elements of F.

3. Individual logarithm: for a target element h € Fyn, compute the discrete logarithm
of h.

The Number Field Sieve and its variants are examples of index calculus algorithms.
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The complexity of NFS and its variants

e 3 phases = 3 costs — overall complexity is sum of 3 costs.

Goal: Optimize the maximum of these three costs.

Why complicated?
1. Many parameters — discrete or continuous, boundary issues.
2. Optimization problem — Lagrange multipliers.
3. Solving a polynomial system — Grébner basis algorithm.

4. Uses many analytic number theory results.
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A summary of these complexities

Complexity Complexity
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Recall p = Lpn(1/3, cp), and complexities = L,n(1/3, f(cp))
Surprising fact:
e Not all the variants are applicable at the boundary case: STNFS has a much
hicher complexitv! 15/20



And the winners are ... |

FFS variants of NFS
QP \/—/variants of NFS
small characteristic Lpn(1/3,¢p) medium characteristic

For the variants of NFS, the best algorithm depends on considerations on n and p.
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Constructing secure pairings

Asymptotically what finite field F,» should be considered in order to achieve the
highest level of security when constructing a pairing?

Goal: find the optimal p and n that answers this question.
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Goal: Look for value of ¢, that maximizes min(compy, compy, ).

Complexity
31
2.5 . I =(8.77,2.19
5] “Th = (445,2.23] J')/
151 s : — MNFS-A
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e Complexities for finite field DLP are decreasing functions.

e Pollard rho is an increasing function (complexitye = p'/2¢)

— optimal ¢, given by the intersection point!

18/20



Conclusion for pairings

You wanna build
a secure
pairing?

normal p

special p
A=20

special p
A=3

n prime

cp = 4.45, cmNFs-4 = 2.23

cp = 4.36, csnFs-3 = 2.18

n composite

Cp = 3.91, CMexTNFS-B — 1.91

Suprising fact: Using a special form for p does not always make the pairing less secure

I It depends on the value of A.
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Thank you for your attention!

Questions?
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