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The discrete logarithm problem (DLP)

Asymmetric cryptography relies on the hardness of either factorization (RSA) or the
discrete logarithm problem.

Used in Diffie-Hellman, El-Gamal, (EC)DSA, etc

Definition
Given a finite cyclic group G , a generator g ∈ G and a target h ∈ G , find x such that
h = g x .

Commonly used groups: prime finite fields F∗p = (Z/pZ)∗, finite fields F∗pn , elliptic
curves over finite fields E(Fp) ...

Groups G for which DLP is hard
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Examples in the wild

Widely deployed protocols base their security on the hardness of DLP on a group G .

An interesting example: pairing-based protocols!

Fig from Diego Aranha
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Pairing-based cryptography

What is a cryptographic pairing ?

• G1,G2: additive groups of prime order `.

• GT : multiplicative group of prime order `.

A pairing is a map e : G1 ×G2 → GT

• with bilinearity: ∀a, b ∈ Z, e(aP, bQ) = e(P,Q)ab,

• non-degeneracy: ∃P,Q such that e(P,Q) 6= 1,

• and such that e is efficiently computable (for practicality reasons).

Called symmetric if G1 = G2.

4/20



Security of pairing-based protocols

Most of the time, in cryptography:

• G1 = subgroup of E(Fp),

• G2 = subgroup of E(Fpn),

• GT = subgroup of finite field F∗pn .

Why do we care ? hundreds of old and many recent protocols built with pairings.
Example: zk-SNARKS (blockchain, Zcash ...)

Example that uses DLP on both elliptic curves and finite fields.

Question: How to construct a secure pairing-based protocol ?
Look at DLP algorithms on both sides!
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The discrete logarithm problem in finite fields

• Many different algorithms for DLP in Fpn

• Their complexity depends on the relation
between characteristic p and extension degree
n.
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Useful notation

Complexity depends on the relation between characteristics p and extension
degree n.

L-notation:

Lpn(lp, c) = exp((c + o(1))(log(pn))lp(log log pn)1−lp),

for 0 6 lp 6 1 and some constant c > 0.

For complexities:

• When lp → 0: exp (log log pn) ≈ log pn Polynomial-time

• When lp → 1: pn Exponential-time

In the middle, we talk about subexponential time.
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Three families of finite fields

Finite field: Fpn , with p = Lpn (lp, cp)

• Different algorithms are used in the different zones.

• Algorithms don’t have the same complexity in each zone.
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The L-notation for FQ with Q = pn

Question: Which area do we focus on ?
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The first boundary case

In this work, we focus on the boundary case p = Lpn (1/3), the area between the small
and the medium characteristics.

Why?

1. Area where pairings take their values.

2. Many algorithms overlap: which algorithm has the lowest complexity ?
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Balancing complexities for the security of pairings

Idea: For pairings, we want DLP to be as hard on the elliptic curve side than on the
finite field side.

• choose the area where DLP in finite fields is the most difficult;

Fig. Cécile Pierrot

• “balance” complexity on elliptic curves and finite fields:

√
p = Lpn (1/3)⇒ p = Lpn (1/3)
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Main results of the paper

• Analyse the behaviour of many
algorithms in this area.

• Estimate the security of pairing-based
protocols.
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The index calculus algorithms

Consider a finite field Fpn .
Factor basis: F = small set of “ small ” elements.
Three main steps:

1. Relation collection: find relations between the elements of F .

2. Linear algebra: solve a system of linear equations where the unknowns are the
discrete logarithms of the elements of F .

3. Individual logarithm: for a target element h ∈ Fpn , compute the discrete logarithm
of h.

The Number Field Sieve and its variants are examples of index calculus algorithms.
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The complexity of NFS and its variants

• 3 phases = 3 costs overall complexity is sum of 3 costs.

Goal: Optimize the maximum of these three costs.

Why complicated?

1. Many parameters discrete or continuous, boundary issues.

2. Optimization problem Lagrange multipliers.

3. Solving a polynomial system Gröbner basis algorithm.

4. Uses many analytic number theory results.
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A summary of these complexities

Recall p = Lpn(1/3, cp), and complexities = Lpn(1/3, f (cp))
Surprising fact:
• Not all the variants are applicable at the boundary case: STNFS has a much
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And the winners are ... !

small characteristic medium characteristic

QP variants of NFS

Lpn(1/3, cp)

FFS variants of NFS

For the variants of NFS, the best algorithm depends on considerations on n and p.

16/20



Constructing secure pairings

Asymptotically what finite field Fpn should be considered in order to achieve the
highest level of security when constructing a pairing?

Goal: find the optimal p and n that answers this question.
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Goal: Look for value of cp that maximizes min(compE , compFpn
).

• Complexities for finite field DLP are decreasing functions.

• Pollard rho is an increasing function (complexityE = p1/2ρ)

optimal cp given by the intersection point!
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Conclusion for pairings

normal p
special p special p
λ = 20 λ = 3

n prime cp = 4.45, cMNFS-A = 2.23 cp = 4.36, cSNFS-3 = 2.18

n composite cp = 3.91, cMexTNFS-B = 1.91

Suprising fact: Using a special form for p does not always make the pairing less secure
! It depends on the value of λ.
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Thank you for your attention!

Questions?
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