
Discrete logarithm algorithms in pairing-relevant
finite fields

Gabrielle De Micheli

Joint work with Pierrick Gaudry and Cécile Pierrot

Université de Lorraine, Inria Nancy, France

February 27th, 2020
Boston University

1/40



Asymmetric cryptography

Relies on the hardness of two main mathematical problems:

• Factorization (RSA cryptosystem)

• Discrete logarithm problem

2/40



The discrete logarithm problem (DLP)

Used in Diffie-Hellman, El-Gamal, (EC)DSA, etc

Definition
Given a finite cyclic group G , a generator g ∈ G and a target
h ∈ G , find x such that h = g x .

Which group G should we consider ?

3/40



Groups for DLP

In cryptography, choose G such as DLP is difficult:

• prime finite fields F∗p = (Z/pZ)∗,

• class groups of number fields,

• finite fields F∗pn ,

• elliptic curves over finite fields E(Fp),

• genus 2 hyperelliptic curves.

One bad idea: (Z/NZ,+) where DLP is simply a division.

Classical assumptions:

• The order of the group is known.

• There exists an efficient algorithm for the group law.

4/40



Examples in the wild

Widely deployed protocols base their security on the hardness of
DLP on a group G .

An interesting example: pairing-based protocols!

Fig from Diego Aranha
5/40



Pairing-based cryptography

What is a cryptographic pairing ?

• G1,G2: additive groups of prime order `.

• GT : multiplicative group of prime order `.

A pairing is a map e : G1 ×G2 → GT

• with bilinearity: ∀a, b ∈ Z, e(aP, bQ) = e(P,Q)ab,

• non-degeneracy: ∃P,Q such that e(P,Q) 6= 1,

• and such that e is efficiently computable (for practicality
reasons).

Called symmetric if G1 = G2.

6/40



Security of pairing-based protocols

Most of the time, in cryptography:

• G1 = subgroup of E(Fp),

• G2 = subgroup of E(Fpn),

• GT = subgroup of finite field F∗pn .

Why do we care ? hundreds of old and many recent protocols built
with pairings.
Example: zk-SNARKS (blockchain, Zcash ...)

Example that uses DLP on both elliptic curves and finite
fields.

Question: How to construct a secure pairing-based protocol ?
Look at DLP algorithms on both sides!

7/40



The discrete logarithm problem on elliptic curves

• Best algorithm: Pollard Rho

• Complexity: square root of the size
of the subgroup considered.

• No gain except for constant factor
since the 70s.

8/40



The discrete logarithm problem in finite fields

• Many different algorithms for DLP
in Fpn

• Their complexity depends on the
relation between characteristic p
and extension degree n.

9/40



Useful notation

Complexity depends on the relation between characteristics p
and extension degree n.

L-notation:

Lpn(lp, c) = exp((c + o(1))(log(pn))lp(log log pn)1−lp),

for 0 6 lp 6 1 and some constant c > 0.

For complexities:

• When lp → 0: exp (log log pn) ≈ log pn Polynomial-time

• When lp → 1: pn Exponential-time

In the middle, we talk about subexponential time.

10/40



The L-notation for FQ with Q = pnSlide from Pierrick Gaudry

log n

log log p

p = LQ(1/3)

p = LQ(2/3)

11/40



Three families of finite fields

Finite field: Fpn , with p = Lpn (lp, cp)

• Different algorithms are used in the different zones.

• Algorithms don’t have the same complexity in each zone.

Question: Which area do we focus on ?

12/40



The first boundary case

In this work, we focus on the boundary case p = Lpn (1/3), the
area between the small and the medium characteristics.

Why?

1. Area where pairings take their values.

2. Many algorithms overlap: which algorithm has the lowest
complexity ?

13/40



Balancing complexities for the security of pairings

Idea: For pairings, we want DLP to be as hard on the elliptic curve
side than on the finite field side.

• choose the area where DLP in finite fields is the most difficult;

Fig. Cécile Pierrot

• “balance” complexity on elliptic curves and finite fields:

√
p = Lpn (1/3)⇒ p = Lpn (1/3)

14/40



The road ahead

• Analyse the behaviour of
many algorithms in this area.

• Estimate the security of
pairing-based protocols.

15/40



Index Calculus Algorithms

16/40



The index calculus algorithms

Consider a finite field Fpn .
Factor basis: F = small set of “ small ” elements.
Three main steps:

1. Relation collection: find relations between the elements of F .

2. Linear algebra: solve a system of linear equations where the
unknowns are the discrete logarithms of the elements of F .

3. Individual logarithm: for a target element h ∈ Fpn , compute
the discrete logarithm of h.

17/40



The Number Field Sieve

1. f1, f2 irreducible in Z[X ] s.t. the diagram commutes.

2. Compute the algebraic norms in Z: N(a− bθi )

3. Factor Ni (a− bθi ) in Z into prime numbers

4. If prime factors 6 B on both sides relation

18/40



Collecting relations, solving a system...

A relation in Fpn implies the equality:

a− bθ1“ = ”
∏
f ∈F

f αi ≡
∏
f ∈F

f βi “ = ”a− bθ2.

Take the discrete logarithm on both sides:∑
f ∈F

αi log f =
∑
f ∈F

βi log f (mod pn − 1)

= linear relation between log elements of the factor basis F .

Goal: Get as many equations/relations of log of elements of the
factor basis.

Why? we want to solve a linear system!

19/40



Solving the linear system and a descent phase

Linear algebra:

• unknowns are the log f for f ∈ F .

• solve the system to recover the values log f .

How do we solve the system? Sparse linear algebra algorithms :
block Wiedemann algorithm in O(k2), where k is the size of the
system.

Descent phase: our target is h ∈ Fpn . Find log h.

20/40



A few variants...

21/40



The Multiple NFS

Considering multiple number fields.

Z [X ]

Q (θ1) Q (θ2) . . . Q (θi ) . . . Q (θV−1) Q (θV )

Fpn

X 7→θi

θi 7→m

• f1, f2 as in NFS

• V − 2 other polynomials; linear combinations of f1, f2.

22/40



The Tower NFS

R = Z[ι]/h(ι), h monic irreducible of degree n (more algebraic
structure).

R [X ]

Kf1 ⊃ R [X ] /(f1(X )) Kf2 ⊃ R [X ] /(f2(X ))

R/p = Fpn

αf1
7→m

αf2
7→m

23/40



The Special NFS

The characteristic p is the evaluation of a polynomial P of degree
λ with small coefficients: p = P(u) for u � p.

Example: BN family

• P(z) = 36z4 + 36z3 + 24z2 + 6z + 1

• u = −(262 + 255 + 1)

• p = P(u) (254 bits)

p = 16798108731015832284940804142231733909889187121439069848933715426072753864723 .

24/40



The complexity of NFS and its variants

• 3 phases = 3 costs overall complexity is sum of 3 costs.

Goal: Optimize the maximum of these three costs.

Why complicated?

1. Many parameters discrete or continuous, boundary issues.

2. Optimization problem Lagrange multipliers.

3. Solving a polynomial system Gröbner basis algorithm.

4. Uses many analytic number theory results.

25/40



A summary of these complexities

All complexities in LQ (1/3, c) for p = LQ (1/3, cp).

Surprising facts:

• Not all the variants are applicable at the boundary case:
STNFS has a much higher complexity!

• For small values of cp, exTNFS better than MexTNFS.
26/40



What happens in small characteristics ?

27/40



The Function Field Sieve

R = Fp[ι].

Fp [X ,Y ]

Fp [X ] Fp [Y ]

Fpn

Y←g2(X )

X←g1(Y )

X←x

Y←y

• Using a different mathematical object (function fields).

• Similar to the special variant.

28/40



Quasi-polynomial algorithms

A lot of recent progress:

• 2013: complexity of Lpn(1/4 + o(1)) (Joux)

• 2014: heuristic expected running time of 2O((log log pn)2)

(Barbulescu, Gaudry, Joux, Thomé)

• 2019: proven complexity! (Kleinjung and Wesolowski [KP19])

Theorem (Theorem 1.1 in [KP19)

Given any prime number p and any positive integer n, the discrete
logarithm problem in the group F×pn can be solved in expected time

CQP = (pn)2 log2(n)+O(1).

29/40



Lowering the complexity of FFS

30/40



A shifted FFS

Our work: when n = κη, we lower the complexity of FFS.

Main idea: work in a shifted finite field (similar to Tower setup)

• Re-write: FQ = Fpn = Fpηκ = Fp′η , where p′ = pκ.

• From p = LQ (1/3, cp), we get p′ = LQ (1/3, κcp).

Complexity in Fpn for cp = α ⇔ complexity in Fp′η at c ′p = κα.

31/40



And the winners are ... !

small characteristic medium characteristic

QP variants of NFS

Lpn(1/3, cp)

FFS variants of NFS

For the variants of NFS, the best algorithm depends on
considerations on n and p.

32/40



On the security of pairings

33/40



Constructing secure pairings

Asymptotically what finite field Fpn should be considered in order
to achieve the highest level of security when constructing a

pairing?

Goal: find the optimal p and n that answers this question.

34/40



Did we study the correct area ?

Naive approach:
√
p = LQ (1/3, cp).

More precise approach:

• Choose finite field where DLP is hard ⇒ avoid QP area.

p > cross-over point between FFS and QP

• All the variants of FFS and NFS have a complexity in
LQ(1/3, c): pick a finite field where the most efficient
algorithm has the highest c .

after our analysis, we can confirm that the highest
complexities are indeed at p = LQ (1/3).

35/40



The ρ value in pairings

Consider a prime-order subgroup of E over Fp of size r .
Additional parameter: how large is this subgroup ?

ρ =
log p

log r
.

In all known construction: ρ ∈ [1, 2].

(no efficient family of pairings asymptotically reaching ρ = 1.)

36/40



Goal: Look for value of cp that maximizes min(compE , compFpn
).

• Complexities for finite field DLP are decreasing functions.

• Pollard rho is an increasing function (complexityE = p1/2ρ)

optimal cp given by the intersection point!

37/40



When considering everyone!

38/40



Conclusion for pairings

normal p
special p special p
λ = 20 λ = 3

n prime cp = 4.45, cMNFS-A = 2.23 cp = 4.36, cSNFS-3 = 2.18

n composite cp = 3.93, cexTNFS-B = 1.96

Suprising fact: Using a special form for p does not always make
the pairing less secure ! It depends on the value of λ.

39/40



Thank you for your attention!

Questions?

40/40


