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Asymmetric cryptography
Enc C°: /

Ciphertext|

Hard operation

Relies on the hardness of two main mathematical problems:
e Factorization (RSA cryptosystem)

e Discrete logarithm problem
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The discrete logarithm problem (DLP)

— Used in Diffie-Hellman, El-Gamal, (EC)DSA, etc

Definition
Given a finite cyclic group G, a generator g € G and a target
h € G, find x such that h = g*.

Which group G should we consider ?
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Groups for DLP

In cryptography, choose G such as DLP is difficult:

o prime finite fields F;, = (Z/pZ)",

e class groups of number fields,

finite fields IF‘:‘,,,,

elliptic curves over finite fields £(F)),

e genus 2 hyperelliptic curves.

One bad idea: (Z/NZ,+) where DLP is simply a division.

Classical assumptions:

e The order of the group is known.

e There exists an efficient algorithm for the group law.
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Examples in the wild

Widely deployed protocols base their security on the hardness of
DLP on a group G.

Ephemeral Diffie Hellman

Technical Details l
Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256, 128 bit keys, TLS 1.2)

An interesting example: pairing-based protocols!

Fig from Diego Aranha
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Pairing-based cryptography

What is a cryptographic pairing 7
o G1,Gy: additive groups of prime order /.

e G1: multiplicative group of prime order £.

A pairingisamap e: Gy x G - Gt ‘

o with bilinearity: Va, b € Z, e(aP, bQ) = e(P, Q)?",
e non-degeneracy: 3P, Q such that e(P, Q) # 1,

e and such that e is efficiently computable (for practicality
reasons).

Called symmetric if G; = Go.
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Security of pairing-based protocols

Most of the time, in cryptography:
e Gy = subgroup of £(Fp),
e Gy = subgroup of E(Fpn),
* G1 = subgroup of finite field F,.

Why do we care 7 hundreds of old and many recent protocols built
with pairings.
Example: zk-SNARKS (blockchain, Zcash ...)

— Example that uses DLP on both elliptic curves and finite
fields.

Question: How to construct a secure pairing-based protocol ?
— Look at DLP algorithms on both sides!
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The discrete logarithm problem on elliptic curves

K11
X Kt Xips+1 .
Xi-1 PR L e Best algorithm: Pollard Rho
X3 t"m—l e Complexity: square root of the size
\ X 4eqa/ of the subgroup considered.
X \fzﬂ—z Xiya .
2/ e Xpey e No gain except for constant factor
Xn{ Xrpa since the 70s.
'
Xo

8/40



The discrete logarithm problem in finite fields

o

’

e Many different algorithms for DLP
in Fpn

e Their complexity depends on the
relation between characteristic p
and extension degree n.
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Useful notation

— Complexity depends on the relation between characteristics p
and extension degree n.

[-notation:

Lon(Ip, €) = exp((c + o(1)) (log(p"))* (loglog p") " +).

for 0 </, <1 and some constant ¢ > 0.

For complexities:
e When /, — 0: exp (loglog p") ~ log p" Polynomial-time
e When [, — 1: p" Exponential-time

In the middle, we talk about subexponential time.
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The L-nOtathn for ]FQ Wlth Q - pnslide from Pierrick Gaudry

4
log n

p=Lo(1/3)

p=Lo(2/3)

7
log log p
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Three families of finite fields

Finite field: Fpn, with p = Lpn (Ip, ¢p)

Medium char

0
IFZ 1024 I]:pé‘so |Fp S50 IFP1024

e Different algorithms are used in the different zones.

e Algorithms don't have the same complexity in each zone.

Question: Which area do we focus on ?
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The first boundary case

In this work, we focus on the boundary case p = Lyn (1/3), the
area between the small and the medium characteristics.

ﬁ ')Medium char

N ’

0 | 2 1
Lpn <§7 CP) 3

Why?
1. Area where pairings take their values.

2. Many algorithms overlap: — which algorithm has the lowest
complexity 7
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Balancing complexities for the security of pairings

Idea: For pairings, we want DLP to be as hard on the elliptic curve
side than on the finite field side.

e choose the area where DLP in finite fields is the most difficult;

)
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B Call 5
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i P | 3 27
e )
gy \ Lw(Q)
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small p 3 medium p 3 high p I
Quasi-Polynomial ~ FFS MNFS-CM MNFS

Fig. Cécile Pierrot

e "“balance” complexity on elliptic curves and finite fields:

VP =Ly (1/3) = p =Ly (1/3)
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The road ahead

e Analyse the behaviour of
many algorithms in this area.

e Estimate the security of

pairing-based protocols.

{ 4,

1

15/40



Index Calculus Algorithms
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The index calculus algorithms

Consider a finite field Fn.
Factor basis: F = small set of " small " elements.
Three main steps:
1. Relation collection: find relations between the elements of F.

2. Linear algebra: solve a system of linear equations where the
unknowns are the discrete logarithms of the elements of F.

3. Individual logarithm: for a target element h € F,n, compute
the discrete logarithm of h.
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a—bx Z[X]
/ Q\A

X0

o0, Q0 /600) XX o
Ni(a — b0)) O1—m N,(a — b6,)
B-smooth? \} Fpr A B-smooth?
1. fi, f, irreducible in Z[X] s.t. the diagram commutes.
2. Compute the algebraic norms in Z: N(a — b6;)
3. Factor Nj(a — bf;) in Z into prime numbers
4. If prime factors < B on both sides — relation
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Collecting relations, solving a system...

A relation in F,n implies the equality:

a—bo"=" H e = H it ="a— bhs.
feF feFr

Take the discrete logarithm on both sides:

Z ajlogf = Z Bilog f (mod p" — 1)

feF feF

= linear relation between log elements of the factor basis F.

Goal: Get as many equations/relations of log of elements of the
factor basis.

Why? we want to solve a linear system!
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Solving the linear system and a descent phase

Linear algebra:
e unknowns are the log f for f € F.
e solve the system to recover the values log f.

How do we solve the system? Sparse linear algebra algorithms :
block Wiedemann algorithm in O(k?), where k is the size of the
system.

Descent phase: our target is h € Fpn. Find log h.
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The Multiple NFS

Considering multiple number fields.

Z[X]

/ le\

Q) Q(Ov-1) Q(bv)

\\éyﬁ/

e fi,f as in NFS

e V — 2 other polynomials; linear combinations of fi, f,.
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The Tower NFS

R = Z[i]/h(¢), h monic irreducible of degree n (more algebraic
structure).

R[X]

T

Kr 2 RIX]/(i(X)) Kr O R[X]/((X))

af10—>m
ocf2i—>m

R/p:Fp"
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The Special NFS

The characteristic p is the evaluation of a polynomial P of degree
A with small coefficients: p = P(u) for u < p.
Example: BN family

o P(z) =36z* +362% + 24z + 6z + 1

o u=—(2242% +1)

e p = P(u) (254 bits)

P — 16798108731015832284940804142231733909889187121439069848933715426072753864723 .
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The complexity of NFS and its variants

e 3 phases = 3 costs — overall complexity is sum of 3 costs.

Goal: Optimize the maximum of these three costs.

Why complicated?

. Many parameters — discrete or continuous, boundary issues.
. Optimization problem — Lagrange multipliers.

. Solving a polynomial system — Grébner basis algorithm.

A W N =

. Uses many analytic number theory results.
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A summary of these complexities

All complexities in Lg (1/3,¢c) for p = Lq (1/3, cp).

Complezity
; 39\
Compleity \ NFSJLSVL
R . \ NFSJLSV2
2.8+ —MNFS-JLSVL
—MNFS-JLSV2
28 261
— SNFS-56
—SNF5-10
2.4
26
2.2
24
NFS-JLSV1
NFSJLSV2 - 2
NES-A
— MNFS-JLSV1
2271 —MNFS-A 181
exTNFS-B -
—MexTNFS-B
SNFS-2
2 16
[ Cp
05 1 15 2 25 3 0 5 10 15 20 25 30

Surprising facts:
e Not all the variants are applicable at the boundary case:
STNFS has a much higher complexity!
e For small values of c,, exTNFS better than MexTNFS.

26/40



What happens in small characteristics ?
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The Function Field Sieve

R =Tp[].

IEQ‘P [X7 Y]
X<+gi(Y)
k/////;;;igé()() \\\\\\\\\ﬂ
Fp [X] FplY]

X<x
Y<+y
Fpo

e Using a different mathematical object (function fields).

e Similar to the special variant.
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Quasi-polynomial algorithms

A lot of recent progress:

e 2013: complexity of Lpn(1/4 4 o(1)) (Joux)

e 2014: heuristic expected running time of 20((log log p")?)
(Barbulescu, Gaudry, Joux, Thomé)

e 2019: proven complexity! (Kleinjung and Wesolowski [KP19])

Theorem (Theorem 1.1 in [KP19)

Given any prime number p and any positive integer n, the discrete
logarithm problem in the group F :n can be solved in expected time
CQP — (pn)2log2(n)+0(1)

29/40



Lowering the complexity of FFS
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A shifted FFS

Our work: when n = k7, we lower the complexity of FFS.

Main idea: work in a shifted finite field (similar to Tower setup)
e Re-write: Fg = Fpn = Fpns = Fpm, where p’ = p*.
e From p=_Lg(1/3,¢cp), we get p’ = Lg (1/3, kcp).

Complexity in Fj» for ¢, = a < complexity in F,» at ¢, = ra.

Complexity Complezity
18 18
. FFS
17 17 shlft withk =
shlft with k =
16 16
15 \H’P 15
14 rr [-/\ ~ 14
13 13
12 12
- - - - - — Cp -
[ 0.1 0.2 03 0.4 0.5 0.4
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And the winners are ... |

FFS variants of NFS
QP \/—/variants of NFS
small characteristic Lpa(1/3,¢p) medium characteristic

For the variants of NFS, the best algorithm depends on
considerations on n and p.
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On the security of pairings
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Constructing secure pairings

Asymptotically what finite field F,n should be considered in order
to achieve the highest level of security when constructing a
pairing?

Goal: find the optimal p and n that answers this question.
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Did we study the correct area ?

Naive approach: /p = Lg (1/3,¢p).
More precise approach:

e Choose finite field where DLP is hard = avoid QP area.

’ p = cross-over point between FFS and QP‘

o All the variants of FFS and NFS have a complexity in

Lo(1/3,c): pick a finite field where the most efficient
algorithm has the highest c.

— after our analysis, we can confirm that the highest
complexities are indeed at p = Lg (1/3).
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The p value in pairings

Consider a prime-order subgroup of £ over I, of size r.
Additional parameter: how large is this subgroup ?

_logp
~logr’

In all known construction: p € [1,2].

(no efficient family of pairings asymptotically reaching p = 1.)
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Goal: Look for value of ¢, that maximizes min(compg,compFPn).

3 =
o257 — L=(8.77,2.19) —
% 21 : T I, =(4.45,2.23] :
g 1.5 .
o — MNFS-A
E 11 —Pollard Rho with p=1
(@] 3 —Pollard Rho with p=2
O 03 FFS

015 T T T T T

0 2 4 6 8 10

e Complexities for finite field DLP are decreasing functions.

e Pollard rho is an increasing function (complexitys = p'/2¢)

— optimal ¢, given by the intersection point!
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When considering everyone!

Complexity
34
2.5 k
2 -
1.5 4
1] ~MNFS-A
— Pollard Rho with p=1
— Pollard Rho with p=2
- exTNFS-B
0.5 7 ~ SNFS-3
~ SNFS-20
FFS
T T T Cp
2 4 6 8 10
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Conclusion for pairings

a secure
pairing?

You wanna build

'

normal p

special p
A=20

special p
A=3

n prime

Cp = 4.45, CMNFS-A = 2.23

Cp = 4.367 CSNFS-3 = 2.18

n composite

Cp — 3.93, CoxTnFs B — 1.96

Suprising fact: Using a special form for p does not always make
the pairing less secure ! It depends on the value of .
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Thank you for your attention!

Questions?
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