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How to attack ECDSA

1. Focus on the primitive: DLP on elliptic curves

2. OR get extra informations from an implementation: side
channel attacks.
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Our work

• Improve the processing step of already known side-channel
ECDSA attacks, using the Extended Hidden Number Problem
and lattice techniques.

• Optimize the attack to maximize the success probability and
minimize the overall time.

• Perform an attack with the minimum number of
signatures needed to recover the secret key: only 3 signatures!
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Our target: ECDSA

Elliptic Curve Digital Signature Algorithm is a variant of the
Digital Signature Algorithm, DSA, which uses elliptic curves
instead of finite fields.

Public Parameters

• An elliptic curve E over a
prime field.

• A generator G of prime
order q on E .

• A hash function H to Zq.

Secret Key

• An integer α ∈ [1, q − 1] .

Public Key

• pk = [α]G : scalar
multiplication of G by α.
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Signing algorithm

To sign a message m:

Step 1: Randomly select nonce k ←R Zq

Step 2: Compute the point (r , y) = [k]G .

Step 3: Compute s = k−1(H(m) + αr) mod q.

Step 4: Output the signature (r , s).
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Scalar multiplication

Step 2: Compute the point (r , y) = [k]G

Scalar multiplication

• Requires a fast algorithm

• Ideally that doesn’t leak any information on k!
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Double-and-add algorithm

Goal: compute fast point multiplication
on elliptic curves

• Input: integer k and point G .

• Output: Q = [k]G

Step 1 : Convert k to binary:
k = k0 +2k1 +22k2 + · · ·+2tkt

Step 2 : Initialize Q = O
Step 3 : For j = t, · · · , 0, do:

• Q ← 2Q double
• if kj = 1: add Q ← Q + G

Step 4 : Return Q.

• Faster than repeated
additions.

• Time of execution
depends on number
of 1s.

• Reduce Hamming
weight of scalar k

(w)NAF
representation.
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Non-adjacent form (NAF) and windowed-NAF (wNAF)

NAF:

• Impossible to have two consecutive non-zero digits,

• signed digits -1, 0, 1

wNAF:

• Impossible to have two consecutive non-zero digits,

• signed digits are in a larger window: ∈ [−2w + 1, 2w − 1].

Example, 3 representations of 23:

• binary: 23 = 24 + 22 + 21 + 20 = (1, 0, 1, 1, 1)

• NAF: 23 = 25 − 23 − 20 = (1, 0,−1, 0, 0,−1)

• wNAF (for w=3): 23 = 24 + 7× 20 = (1, 0, 0, 0, 7)
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wNAF in the wild

ECSDA with wNAF representation is used in:

• Bitcoin, as the signing algorithm for the transactions

• Some common libraries:
• OpenSSL up to May 2019
• Cryptlib
• BouncyCastle
• Apple’s CommonCrypto
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Oh no! Information is being leaked!

The power of side-channel attacks:

Double and add is not constant time (depends on the number of
non-zero coeff).

(Cache) timing attacks identify (most) of the positions of
the non-zero coefficients in the wNAF representation of the
nonce k.

Real k (wNAF) representation (unknown from an attacker):

1 0 0 0 7 0 0 0 0 0 0 -7 0 0 0 0 0 0 3 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

Information obtained by side channels:

? 0 0 0 ? 0 0 0 0 0 0 ? 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0
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Information collected

What we have:
Many messages mi with their signatures (si , ri ), signed by a unique
secret key α.

Side channels give the trace of ki :
? 0 0 0 ? 0 0 0 0 ? 0 0 0 ? 0 0 0 ? 0 0 0

The important information is:

• number of non-zero coefficients, `i

• position of non-zero coefficients,
λ1, · · · , λ`i
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The Extended Hidden Number Problem

Hlavác, Rosa (SAC 2007), Extended hidden number problem and its

cryptanalytic applications.

Consider u congruences of the form

aiα +

`i∑
j=1

bi ,jki ,j ≡ ci (mod q),

• Unknowns: the secret α and 0 6 ki ,j 6 2ηij ,

• known values: modulus q, ηij , ai , bi ,j , ci , `i for 1 6 i 6 u,

Recover α in polynomial time.
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Using EHNP to attack ECDSA

Goal: Transform ECDSA into an EHNP setup.

• ECDSA equation:

αr = sk − H(m) (mod q).

• Known information on the nonce k :

k =
∑̀
j=1

kj2
λj = k̄ +

∑̀
j=1

dj2
λj+1,

• By substitution:

αri −
∑`i

j=1 2λi,j+1sidi ,j − (si k̄i − H(mi )) ≡ 0 (mod q)
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The Extended Hidden Number Problem

We now have u congruences of the form

aiα +

`i∑
j=1

bi ,jki ,j ≡ ci (mod q),

given by

Ei : αri −
∑`i

j=1 2λi,j+1sidi ,j − (si k̄i − H(mi )) ≡ 0 (mod q)

• Unknowns: the secret key α and 0 6 di ,j 6 2µi,j ,

• known values: modulus q, ri , λi ,j , si , k̄i , `i , H(mi ), µi ,j for
1 6 i 6 u,

Recover α in polynomial time.

HOW? with lattices
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Reducing the size of the system

• We start with our system of modular equations Ei .

• Basic trick: Reduce the size of the system by eliminating α
from the equations: r1Ei − riE1

• Remember that

α = r−1
1

(
`1∑
i=1

2λ1,j+1s1d1,j + (s1k̄1 − z1)

)
(mod q).

• New Goal: recover the di ,j , with a new system of equations:

E ′i :
∑`1

j=1 (2λ1,j+1s1ri )︸ ︷︷ ︸
:=τj,i

d1,j +
∑`i

j=1 (−2λi,j+1si r1)︸ ︷︷ ︸
:=σi,j

di ,j

− r1(si k̄i − H(mi )) + ri (s1k̄1 − H(m1))︸ ︷︷ ︸
:=γi

≡ 0 (mod q).
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Lattice: Definition, bad and good bases

Definition
A lattice is a discrete additive subgroup
of Rn, usually identified by a basis
{b1, · · · , bn}.

Reduction algorithms: BKZ or LLL

Given an arbitrary basis {b1, · · · , bn},
find a ”better” basis {b∗1, · · · , b∗n}.

Better → the first vectors are shorter
(and more orthogonal) in the reduced
basis.
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Our lattice construction

We construct a lattice such that there exists a linear combination
v of the lines containing the di ,j :

v = (t2, · · · , tu, d1,1, · · · , du,`u ,−1)×



q
. . .

. . .

q

E ′2 E ′3 . . . E ′u 2m−µ1,1

...
...

...
...

. . .
...

...
...

... 2m−µu,`u

2m . . . 2m



v = (0, . . . , 0, d1,12m−µ1,1 − 2m−1, . . . , du,`u2m−µu,`u − 2m−1,−2m−1).
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How to find v?

Goal: Find v .

• Good point: v has a particular shape

• ! It has no reason to appear in the basis

•
1. Make it short (by ugly manipulations of the lattice)
2. Run BKZ on the basis1

3. Pray to find a good shaped vector in the reduced basis
4. Try to reconstruct α with the plausible di,j you get.

1In practice 80 6 dim(lattice) 6 215.
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A new pre-processing method to speed-up the reduction

The slowest part of the attack: lattice reduction.
BKZ reduction time ↘ if dimension ↘ OR coefficients size ↘.

Goal: Speed up the reduction time by ↘ the size of the
coefficients.

• Each trace t comes with a notion of ”weight” µ(t).

• Each coefficient of the basis is multiplied by m = maxµ(t) to
get integer coefficients.

• The size of the coefficients depends on m.

Idea: pre-select traces with small weight

Sa = {t ∈ T |µ(t) 6 a}

Numerical experiment: 5000 traces from OpenSSL: a ∈ [11, 67].
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The effect of pre-processing

Key recovery time = time of 1 trial × nbr of trials to find the key.

• Considering 4 and 5 traces with BKZ-25.

• S19: already 44% of the traces

• 3 traces: from 12 days (Sall) to 39 h (S11) on a single core.
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3 ways to evaluate the attack

Several parameters need to be balanced to mount an attack:

• the preprocessing subset of traces Sa, if any

• BKZ block size β: varies between 20 and 35

• β ↗ ⇒ probability of success of 1 trial ↗

• but β ↗ ⇒ reduction time ↗
• a multiplying coeff. in the lattice

What is the minimal amount of signatures an attacker can use?

What are the parameters that lead to

• the fastest attack?

• the best probability of success?
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Our Main Results

• 3 signatures: 39 hours, small probability of success, S11,
BKZ-35.

• Our fastest attack:
• 4 signatures: 1 hour 17 minutes, BKZ-25, S15

• 8 signatures: 2 minutes 25 seconds, BKZ-20, Sall

• Our most successful attack:
• 4 signatures: 4% of success per trial, BKZ-35, Sall
• 8 signatures: 45% of success per trial, BKZ-35, Sall
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Previous attacks on ECDSA with wNAF

• Comparing with another variant of EHNP
Fan, Wang, Cheng (CCS 2016), Attacking OpenSSL

implementation of ECDSA with a few signatures

Attack # signatures Probability of success Overall time

[FWC2016] 5 4% 15 hours/18 minutes
6 35% 1 hour 21 minutes/18 minutes
7 68% 2 hours 23 minutes/34.5 minutes

Our attack 3 0.2% 39 hours
4 4% 1 hour 17 minutes
5 20% 8 minutes 20 seconds
6 40% 5 minutes
7 45% 3 minutes
8 45% 2 minutes

• Comparing with the Hidden Number Problem
Van de Pol, Smart, Yarom (CT-RSA 2015) Just a Little Bit More.

13 signatures, 54% probability of success and 21 seconds total
time to key recovery.
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Errors can occur, and they often do!

Side-channel analyzis is not perfect.

Real k (wNAF) representation (unknown from an attacker):

1 0 0 0 7 0 0 0 0 0 0 -7 0 0 0 0 0 0 3 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

Information obtained by side channels:

? 0 0 0 ? 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0
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Probability of success with various types of error

Error type 1:

A 0 coefficient misread as ?:
adds a new variable to the
system, the nbr of non-zero digits
is overestimated.

Error type 2:

A non-zero coefficient misread as
0: lose information necessary for
key recovery.

Error 2 affects the probability of success of key recovery much more.
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Resilience up to 2% of errors

• Morality: Resilience to errors up to 2% of misread digits.

• Resilience increase to 4% if we avoid certain types of errors.

• Strategy: in the side channel part, if you are not confident
about your reading, choose to put a ? instead of a 0.
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Thank you!

A Tale of Three Signatures: practical attack of ECDSA with wNAF
Gabrielle De Micheli, Cécile Pierrot, Rémi Piau

https://eprint.iacr.org/2019/861
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Fastest attack

Number of Total Parameters Probability of
signatures time BKZ Preprocessing ∆ success (%)

3 39 hours 35 S11 ≈ 23 0.2
4 1 hour 17 25 S15 ≈ 23 0.5
5 8 min 20 25 S19 ≈ 23 6.5
6 3 min 55 20 Sall ≈ 23 7
7 2 min 43 20 Sall ≈ 23 17.5
8 2 min 25 20 Sall ≈ 23 29

Total time key recovery = time of single trial × number of trials to
find the key.
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Highest probability of success of a single trial

Number of Probability of Parameters Total
signatures success (%) BKZ Preprocessing ∆ time

3 0.2 35 S11 ≈ 23 39 hours
4 4 35 Sall ≈ 23 25 hours 28
5 20 35 Sall ≈ 23 2 hours 42
6 40 35 Sall ≈ 23 1 hour 04
7 45 35 Sall ≈ 23 2 hours 36
8 45 35 Sall ≈ 23 5 hours 02
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Comparing times with Fan et al, CCS 2016

Number of Our attack Fan et al
signatures Time Success (%) Time Success (%)

3 39 hours 0.2% – –
4 1 hour 17 minutes 0.5% 41 minutes 1.5%
5 8 minutes 20 seconds 6.5% 18 minutes 1%
6 ≈ 5 minutes 25% 18 minutes 22%
7 ≈ 3 minutes 17.5% 34 minutes 24%
8 ≈ 2 minutes 29% – –
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Comparing success probabilities with Fan et al, CCS 2016

Number of Our attack Fan et al
signatures Success (%) Time Success (%) Time

3 0.2% 39 hours – –
4 4% 25 hours 28 minutes 1.5% 41 minutes
5 20% 2 hours 42 minutes 4% 36 minutes
6 40% 1 hour 4 minutes 35% 1 hour 43 minutes
7 45% 2 hours 36 minutes 68% 3 hours 58 minutes
8 45% 5 hours 2 minutes – –
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Error analysis using BKZ-25, ∆ ≈ 23 and Sall .

Number of Probability of success (%)
signatures 0 errors 5 errors 10 errors 20 errors 30 errors

4 0.28 � 1 0 0 0
5 4.58 0.86 0.18 � 1 0
6 19.52 5.26 1.26 0.14 � 1
7 33.54 10.82 3.42 0.32 � 1
8 35.14 13.26 4.70 0.58 � 1

• Corresponds to a resilience of 2% of errors.

• Total time: 1 out of 5000 experiments, 46 sec per experiment,
65 hours on a single core
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