
CacheQuote: Efficiently Recovering Long-
term Secrets of SGX EPID via Cache Attacks

September 5"# 2018
MIT, Security Seminar
Gabrielle De Micheli

Joint work with:
Fergus Dall, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger,

Ahmad Moghimi, and Yuval Yarom

1

https://tches.iacr.org/index.php/TCHES/article/view/879/831

Intel Software Guard Extensions

2

Mail
Data …

1. Set of instructions aiming to guarantee confidentiality and integrity of
applications that run inside untrusted environments.

2. Protects enclaves of code and data

Enclaves

• Enclaves are isolated from the software
running on the computer
• SGX controls the entry to and exit from

enclaves
3

A Enclave
code data

Application

OS

Remote attestation: EPID

4

Client

Intel Attestation
Service

quote

Verification by
Intel

Shared secret

Trust me !Intel
SGX

EPID key

Trust is based on the EPID key!
Why need IAS ? Revocation !
All quotes are encrypted by SGX.

Unlinkability

impossible to identify the platform that
produced a signature on some message !.

5

Unforgeability

impossible for an attacker to forge a valid
signature on some previously-unsigned
message, without knowing a non-revoked secret
key.

6

σm

NO!

Our results

• First cache attacks on Intel’s EPID protocol
implemented inside SGX.

• Recover part of the enclave’s long term secret
key.

• Malicious attestation server (Intel) can break
the unlinkability guarantees of SGX’s remote
attestation protocol.

7

EPID: setup

• An issuer:

• A revocation manager:

• A platform:

• A verifier:

8

EPID: algorithms

9

m, sk

Yes/No

Setup

Join

Sign

Verify

σ

(#$%, '(%)

(#$%, '(%)

#$%
(%

1+

issuer

platform

platform Client
Verifier

Verifier

platform

σ

The signing algorithm
• Secret key: ! + Intel’s signature on !
• Randomly choose: # ∈ % and compute

& ≔ #(
• How to sign ?
Non-interactive zero knowledge proof of knowledge:

“I know an unrevoked f such that & ≔ #(”
• Requires computing :)*+, where) is some value.
• Signature , has the values K, B and -(← /(+ 0!

10

Attack idea

• Recover side-channel information about the
length of the nonce !" from #$%.

• After many observations, use length data to
mount a lattice attack to recover the value of &.

• Break unlinkability.

11

How unlinkability is broken?

• ! is unique per platform and private.
• The attacker knowns a signature 3 =
5, 7,… on some message : and !.

• He can check if 5 = 7;.
• If yes, then the signature was issued by the

platform whose key is !.

12

Side-channel attacks

• Attacks based on information obtained from
leakage between software and hardware.

• Timing side-channel attacks: exploit timing
variation in execution time of cryptographic
algorithms.

• Example: execution time of square and multiply
algorithm used in modular exponentiation
depends linearly on the number of non-zero bits
in the key.

13

Square and multiply

14

Algorithm Example

Input: a, b
Output: ! = #$

Input: 3, 5
Output: 3&

1. 5 = 101
2. 3
3. 3(
4. 3((×3

We did 3 computations instead of 5!
1024: in binary: 10000000000 10 calculations

Goal: fast computation of large positive integer powers of a number

Time of execution depends on number of multiplication, which depends on the number of 1’s.

Convert exponent to binary: + = +,-. ⋯b1

For 2 = 3 − 1 …0 to 0, do:
If += = 0: square ! ← !(

! = 1

If += = 1: square and multiply c ← c(×#
Return c

https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Number

Cache attacks

• Memory accesses are not always performed
in constant time!

Cache attacks: analysis of the cache
behavior.

• Attacks: Prime and Probe [Per05, OST06]

15

CPU vs. Memory

Cache are used to bridge the
gap
• Divides memory into lines
• Stores recently used lines

• In a cache hit, data is
retrieved from the cache

• In a cache miss, data is
retrieved from memory and
inserted to the cache

Processor

Memory

Cache

16

Set Associative Caches

• Memory lines map to cache
sets. Multiple lines map to
the same set.

• Sets consist of ways. A
memory line can be stored
in any of the ways of the
set it maps to.

• When a cache miss occurs,
one of the lines in the set is
evicted.

Memory
17

Ways

Sets

The Prime+Probe Attack [Per05, OST06]

• Allocate a cache-sized
memory buffer

• Prime: fills the cache with
the contents of the buffer

• Probe: measure the time
to access each cache set
– Slow access indicates

victim access to the set

Memory
18

The image part with relationship
ID rId3 was not found in the file.

The image part with relationship ID rId3 was
not found in the file.

The image part with relationship ID rId3 was not
found in the file.

Prime+Probe attack examples
• RSA (OpenSSL 0.9.7c), Percival 2005

• AES (OpenSSL 0.9.8), Osvik, Shamir, and Tromer. 2005
Tromer, Osvik, and Shamir. 2010

• DSA (OpenSSL 0.9.8d) Onur Acıic¸mez, Brumley, and
Grabher. 2010

• ECDSA (OpenSSL 0.9.8k) Brumley and Hakala. 2009

• ElGamal (GnuPG v.2.0.19,libgcrypt v.1.5.0) Zhang, Juels,
Reiter, and Ristenpart. 2012

19

Countermeasures

• Constant-time techniques:
– remove conditional execution (two conditions can

have different execution time)
– no secret dependent memory access …

20

In our attack

• The signing algorithm requires computing: !"#
• Use some variant of square and multiply

which uses windows of bits.
• Exponentiation faster with fewer non-zeros

bits (fewer multiplications)
• Recode the nonce $% to have fewer non-zero

bits.

21

Recoding the nonces
• Non-adjacent form (NAF) encoding:

a. no two sequential non-zero digits.
b. signed digits

• Example:
a. binary: (0,1,1,1) = 2(+ 2* + 2+ = 7
b. 2-NAF: (1,0,0, −1) = 2. − 2+ = 7

• Generalization to w-NAF: work in base 2/.
• The quoting enclave recodes the scalar 12 using some variant of w-

NAF.
12 = 1*,⋯ 14 s.t.:

1. 12 = ∑6 2/ ⋅6 16
2. −2/ − 1 ≤ 16 ≤ 2/ − 1.

• Example: 0, 0, 1, −25 = 2:⋅* ⋅ 1 + 2:⋅+ ⋅ −25 = 7

22

Scalar multiplication algorithm
MultPoint(point !, window size " , scalar #$ = r):
Initialize ! ∶ !(← *
For + ← 1 to 2./0 do:

!1 ← ! ⋅ !1/0
+ ← max(7 ∶ #8 ≠ 0)
< ← !=>
+ ← + − 1
While + ≥ 0 do:

s ← #BC
s ← < ⋅ !=>
+ ← + − 1

End while
Output: <

23

Main loop

" squaring operations

Start with MSB ≠ 0

Multiplication with
precomputed value !=>
(selected in constant-time)

• Scalar of length 256 bits recoded scalar of length 52 51
loop iterations.

• Bits 256 and 255 are 0 recoded scalar of length 51 50 loop
iterations.

Going back to the attack
• Goal: get information about the MSB of the nonce !".
• Idea: we want to use Prime+Probe to count the

number of iterations in the main loop of our scalar
multiplication algorithm.

• How?
1. code is data: executing code means memory accesses

(to bring the instructions from memory).
2. monitor the memory accesses needed to bringing the

loop code in, which will tell us the number of
iterations that the loop did.

24

Counting loops

25

• One period corresponds to one loop iteration.
• Number of periods gives us information on the number of

iterations.

• Monitor cache access patterns during the computation of the main
loop.

Counting loop iterations automatically

• Matlab signal processing toolbox.
• Use several cache sets: the signal pattern is

unique for each cache sets).
• Use five different loop counters that use

information from different cache sets to count
number of loops on each signature.

26

Handling noise
Common sources of error:
1. failing to accurately detect the beginning and

the end of the multiplier window.
2. under-counting short peaks
3. over-counting occasional noises that introduce

unexpected peaks or pattern.
if four of the five loop counters agree on the

number of loop iterations, the loop counting would
be error free.

27

Analyzing the data
• A 49-loop period = "# with 7 MSB = 0.

Probability: -./ many samples needed to
get one signature with such a nonce.

• To reduce the number of observations, we can do
some manual verification.

• Return traces where 2 or more counters agree.
• Introduces some error manual post-

processing needed.

28

The road ahead

29

("#,
%#, ℓ#

)

("(, %(, ℓ(
)

…

("), %), ℓ))
*

A lattice attack

From the signing algorithm:
!" = $" + &' mod +

with !", & public and p is a 256-bit order of an elliptic
curve.
Side channel information about the length of $".

Goal: Solve for the secret key '.

hidden number problem
30

The hidden number problem (HNP)
[BV96]

• Goal: recover some secret !

• Attacker has many samples from the ℓ MSB of random
multiples of ! mod &.

• Given prime p and a fixed ℓ (≈ log &), recover the secret
! in polynomial time with probability ≥ /

0 , under the
assumption that

!12 − 42 ≤ 6
0ℓ .

12: uniformly and independently randomly chosen integers in
86∗ .

42: integers representing the knowledge of the MSB of
!12 mod &.

31

Applications of the HNP

• Boneh and Venkatesan: prove the existence of
hardcore bits for the Diffie-Hellman key
exchange [BV96].

• Nguyen and Shparlinski: attack DSA and
ECDSA signing algorithms [NS02, NS03].

• Many attacks on implementations of the
(EC)DSA algorithm.

32

Converting our problem to HNP

• In our attack, we get many samples !", $ %
which satisfy:

!" ≡ '" + $) mod -

• And information about the most significant
zero bits ℓ in '".

!% − $%) = |'%| ≤ 4
5ℓ

33

Lattices

34

• A lattice ! is a discrete additive subgroup of 12.

• Any 3-dimensional lattice can be specified by a basis of at most
3 linearly independent vectors.

• A basis of a lattice is represented as a matrix whose rows are
the basis vectors.

Closest Vector Problem (CVP)

• Given a lattice ! and a target point ", CVP asks
to find the lattice point closest to the target.

• Many applications of the CVP only require
finding a lattice vector that is not too far from
the target, even if not necessarily the closest.

• Solving CVP in a special lattice will give a
solution to the hidden number problem.

35

CVP embedding

36

Target vector for CVP

Shortest vector: (2ℓ$%&'&, … , 2ℓ*%&'+, ,, −.)

Recentering the nonces
• !": positive value lattice construction allows negative

values too.

• Recenter the ." around zero.

• Length of ." ≤ 212, 4"= 256 − !"
• Rewrite:

s′" − .′" ≡ ;"< mod ?
With: @′" = @" − 212,

."A = ." − 212,
• New problem: − B

CD2EF ≤ .′" ≤ B
CD2EF

37

Effect of recentering the nonces

38

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0

0.5

1

7 bits known12 bits known

Number of samples

S
u
c
c
e
s
s
p
r
o
b
a
b
i
l
i
t
y

recentered

not recentered

Recentering the nonces has a noticeable impact on the number of
samples required for key recovery.

Samples of different lengths

39

Performance tradeoff: decrease the signature sampling time vs
increasing time spent running lattice basis reduction.

• Probability of having a signature such that !" has ℓMSB equal to 0 is '
(ℓ

• The higher number of bits required, the more observations we need.

• Use loops with less bits (e.g. 2-bit samples) to reduce the sampling
time.

• Less bits means more samples to recover the key, so higher dimension
lattice.

Example

40

• Using only 49-loop samples in the lattice, i.e. learning 7 most significant
bits of the nonce, we need 38 samples to achieve above a 50% success rate in the
lattice construction (blue line).

We can reduce the total number of samples we need to collect by including
samples that had revealed 2 bits of the nonce.

Error correction

• Quite common in a side-channel attack to
have errors during the collection process.

• Error => incorrect bound on the size of the !"

• Problem when undercounting the number of
loops => lattice construction fails in this case

41

Prior work
• Ignore the issue entirely

• Use signal processing

• Subsample different subsets of samples until
we get an error-free sample

42

Error analysis

When the lattice includes more samples than necessary, key recovery may
still be possible in the presence of errors.

In our measurements, an error corresponds to an incorrect loop count.

43

Recovering f

44

10 600 signatures required if only using 49-loop samples to get 37 error-free samples.

• Use samples of different loop lengths

• Reduce the number of signatures with manual inspection: less than 7 500 observed
signatures to obtain enough 49-loop observations for a full key recovery.

Conclusion

• We finally have f.

• Limitations: we can’t run the attack ourselves
as all the EPID signatures are encrypted with
Intel’s public key !

• A malicious Intel could break the unlinkability
guarantee.

45

46

Thank you !

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger,
Ahmad Moghimi, and Yuval Yarom

CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks

