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Intel Software Guard Extensions
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Mail
Data …

1. Set of instructions aiming to guarantee confidentiality and integrity of 
applications that run inside untrusted environments.

2. Protects enclaves of code and data



Enclaves

• Enclaves are isolated from the software 
running on the computer
• SGX controls the entry to and exit from 

enclaves
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Remote attestation: EPID
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Trust me !Intel
SGX

EPID key

Trust is based on the EPID key!
Why need IAS ? Revocation !
All quotes are encrypted by SGX.



Unlinkability

impossible to identify the platform that 
produced a signature on some message !.
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Unforgeability

impossible for an attacker to forge a valid 
signature on some previously-unsigned 
message, without knowing a non-revoked secret 
key.
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Our results

• First cache attacks on Intel’s EPID protocol 
implemented inside SGX.

• Recover part of the enclave’s long term secret 
key.

• Malicious attestation server (Intel) can break 
the unlinkability guarantees of SGX’s remote 
attestation protocol.
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EPID: setup

• An issuer:

• A revocation manager:

• A platform:

• A verifier:
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EPID: algorithms
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The signing algorithm
• Secret key: ! + Intel’s signature on !
• Randomly choose: # ∈ % and compute

& ≔ #(
• How to sign ? 
Non-interactive zero knowledge proof of knowledge: 

“I know an unrevoked f such that & ≔ #(” 
• Requires computing : )*+, where ) is some value.
• Signature , has the values K, B and -( ← /( + 0!
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Attack idea

• Recover side-channel information about the 
length of the nonce !" from #$%.

• After many observations, use length data to 
mount a lattice attack to recover the value of &.

• Break unlinkability.
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How unlinkability is broken?

• ! is unique per platform and private.
• The attacker knowns a signature 3 =
5, 7,… on some message : and !.

• He can check if 5 = 7;.
• If yes, then the signature was issued by the 

platform whose key is !.
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Side-channel attacks

• Attacks based on information obtained from 
leakage between software and hardware.

• Timing side-channel attacks: exploit timing 
variation in execution time of cryptographic 
algorithms.

• Example: execution time of square and multiply 
algorithm used in modular exponentiation 
depends linearly on the number of non-zero bits 
in the key.
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Square and multiply
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Algorithm Example

Input: a, b
Output: ! = #$

Input: 3, 5
Output: 3&

1. 5 = 101
2. 3
3. 3(
4. 3( (×3

We did 3 computations instead of 5!
1024: in binary: 10000000000                   10 calculations

Goal: fast computation of large positive integer powers of a number

Time of execution depends on number of multiplication, which depends on the number of 1’s.

Convert exponent to binary: + = +,-. ⋯b1

For 2 = 3 − 1 …0 to 0, do:
If += = 0: square ! ← !(

! = 1

If += = 1: square and multiply c ← c( ×#
Return c

https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Number


Cache attacks

• Memory accesses are not always performed 
in constant time! 

Cache attacks: analysis of the cache 
behavior.

• Attacks: Prime and Probe [Per05, OST06]
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CPU vs. Memory

Cache are used to bridge the 
gap
• Divides memory into lines
• Stores recently used lines

• In a cache hit, data is 
retrieved from the cache

• In a cache miss, data is 
retrieved from memory and 
inserted to the cache

Processor

Memory

Cache
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Set Associative Caches

• Memory lines map to cache 
sets. Multiple lines map to 
the same set.

• Sets consist of ways. A 
memory line can be stored 
in any of the ways of the 
set it maps to.

• When a cache miss occurs, 
one of the lines in the set is 
evicted.

Memory
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The Prime+Probe Attack [Per05, OST06]

• Allocate a cache-sized 
memory buffer

• Prime: fills the cache with 
the contents of the buffer

• Probe: measure the time 
to access each cache set
– Slow access indicates 

victim access to the set

Memory
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The image part with relationship 
ID rId3 was not found in the file.

The image part with relationship ID rId3 was 
not found in the file.

The image part with relationship ID rId3 was not 
found in the file.



Prime+Probe attack examples
• RSA (OpenSSL 0.9.7c), Percival 2005

• AES (OpenSSL 0.9.8), Osvik, Shamir, and Tromer. 2005 
Tromer, Osvik, and Shamir. 2010

• DSA (OpenSSL 0.9.8d) Onur Acıic¸mez, Brumley, and 
Grabher. 2010

• ECDSA (OpenSSL 0.9.8k) Brumley and Hakala. 2009

• ElGamal (GnuPG v.2.0.19,libgcrypt v.1.5.0) Zhang, Juels, 
Reiter, and Ristenpart. 2012
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Countermeasures

• Constant-time techniques:
– remove conditional execution (two conditions can 

have different execution time)
– no secret dependent memory access …

20



In our attack

• The signing algorithm requires computing: !"#
• Use some variant of square and multiply 

which uses windows of bits.
• Exponentiation faster with fewer non-zeros 

bits (fewer multiplications)
• Recode the nonce $% to have fewer non-zero 

bits.
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Recoding the nonces
• Non-adjacent form (NAF) encoding: 

a. no two sequential non-zero digits.
b. signed digits

• Example:
a. binary: (0,1,1,1) = 2( + 2* + 2+ = 7
b. 2-NAF: (1,0,0, −1) = 2. − 2+ = 7

• Generalization to w-NAF: work in base 2/.
• The quoting enclave recodes the scalar 12 using some variant of w-

NAF.
12 = 1*,⋯ 14 s.t.:

1. 12 = ∑6 2/ ⋅6 16
2. −2/ − 1 ≤ 16 ≤ 2/ − 1.

• Example: 0, 0, 1, −25 = 2:⋅* ⋅ 1 + 2:⋅+ ⋅ −25 = 7
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Scalar multiplication algorithm
MultPoint(point !, window size " , scalar #$ = r):
Initialize ! ∶ !( ← *
For + ← 1 to 2./0 do:

!1 ← ! ⋅ !1/0
+ ← max(7 ∶ #8 ≠ 0)
< ← !=>
+ ← + − 1
While + ≥ 0 do:

s ← #BC
s ← < ⋅ !=>
+ ← + − 1

End while
Output: <
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Main loop

" squaring operations

Start with MSB ≠ 0

Multiplication with 
precomputed value !=>
(selected in constant-time)

• Scalar of length 256 bits          recoded scalar of length 52           51 
loop iterations.

• Bits 256 and 255 are 0          recoded scalar of length 51            50 loop 
iterations.



Going back to the attack
• Goal: get information about the MSB of the nonce !".
• Idea: we want to use Prime+Probe to count the 

number of iterations in the main loop of our scalar 
multiplication algorithm.

• How? 
1. code is data: executing code means memory accesses 

(to bring the instructions from memory). 
2. monitor the memory accesses needed to bringing the 

loop code in, which will tell us the number of 
iterations that the loop did.
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Counting loops
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• One period corresponds to one loop iteration.
• Number of periods gives us information on the number of 

iterations.

• Monitor cache access patterns during the computation of the main
loop.



Counting loop iterations automatically

• Matlab signal processing toolbox.
• Use several cache sets: the signal pattern is 

unique for each cache sets).
• Use five different loop counters that use 

information from different cache sets to count 
number of loops on each signature.
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Handling noise
Common sources of error:
1. failing to accurately detect the beginning and 

the end of the multiplier window.
2. under-counting short peaks
3. over-counting occasional noises that introduce 

unexpected peaks or pattern.
if four of the five loop counters agree on the 

number of loop iterations, the loop counting would 
be error free.
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Analyzing the data
• A 49-loop period = "# with 7 MSB = 0.

Probability: -./ many samples needed to 
get one signature with such a nonce.

• To reduce the number of observations, we can do 
some manual verification.

• Return traces where 2 or more counters agree. 
• Introduces some error           manual post-

processing needed.
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The road ahead
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A lattice attack

From the signing algorithm: 
!" = $" + &' mod +

with !", & public and p is a 256-bit order of an elliptic 
curve.
Side channel            information about the length of $".

Goal: Solve for the secret key '.

hidden number problem 
30



The hidden number problem (HNP) 
[BV96]

• Goal: recover some secret !

• Attacker has many samples from the ℓ MSB of random 
multiples of ! mod &.

• Given prime p and a fixed ℓ (≈ log &), recover the secret 
! in polynomial time with probability ≥ /

0 , under the 
assumption that

!12 − 42 ≤ 6
0ℓ .

12: uniformly and independently randomly chosen integers in 
86∗ .

42: integers representing the knowledge of the MSB of                 
!12 mod &.
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Applications of the HNP

• Boneh and Venkatesan: prove the existence of 
hardcore bits for the Diffie-Hellman key 
exchange [BV96].

• Nguyen and Shparlinski: attack DSA and 
ECDSA signing algorithms [NS02, NS03].

• Many attacks on implementations of the 
(EC)DSA  algorithm.
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Converting our problem to HNP

• In our attack, we get many samples !", $ %
which satisfy:

!" ≡ '" + $) mod -

• And information about the most significant 
zero bits ℓ in '".

!% − $%) = |'%| ≤ 4
5ℓ
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Lattices
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• A lattice ! is a discrete additive subgroup of 12.

• Any  3-dimensional lattice can be specified by a basis of at most
3 linearly independent vectors.

• A basis of a lattice is represented as a matrix whose rows are 
the basis vectors.



Closest Vector Problem (CVP)

• Given a lattice ! and a target point ", CVP asks 
to find the lattice point closest to the target.

• Many applications of the CVP only require 
finding a lattice vector that is not too far from 
the target, even if not necessarily the closest.

• Solving CVP in a special lattice will give a 
solution to the hidden number problem.
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CVP embedding
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Target vector for CVP

Shortest vector: (2ℓ$%&'&, … , 2ℓ*%&'+, ,, −.)



Recentering the nonces
• !": positive value lattice construction allows negative 

values too.

• Recenter the ." around zero.

• Length of ." ≤ 212, 4"= 256 − !"
• Rewrite:

s′" − .′" ≡ ;"< mod ?
With: @′" = @" − 212,

."A = ." − 212,
• New problem: − B

CD2EF ≤ .′" ≤ B
CD2EF
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Effect of recentering the nonces
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Recentering the nonces has a noticeable impact on the number of 
samples required for key recovery.



Samples of different lengths
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Performance tradeoff: decrease the signature sampling time vs 
increasing time spent running lattice basis reduction.

• Probability of having a signature such that !" has ℓMSB equal to 0 is '
(ℓ

• The higher number of bits required, the more observations we need.

• Use loops with less bits (e.g. 2-bit samples) to reduce the sampling 
time.

• Less bits means more samples to recover the key, so higher dimension
lattice.



Example
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• Using only 49-loop samples in the lattice, i.e. learning 7 most significant
bits of the nonce, we need 38 samples to achieve above a 50% success rate in the
lattice construction (blue line).

We can reduce the total number of samples we need to collect by including 
samples that had revealed 2 bits of the nonce.



Error correction

• Quite common in a side-channel attack to 
have errors during the collection process.

• Error => incorrect bound on the size of the !"

• Problem when undercounting the number of 
loops => lattice construction fails in this case
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Prior work
• Ignore the issue entirely

• Use signal processing

• Subsample different subsets of samples until 
we get an error-free sample
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Error analysis

When the lattice includes more samples than necessary, key recovery may 
still be possible in the presence of errors.

In our measurements, an error corresponds to an incorrect loop count.
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Recovering f
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10 600 signatures required if only using 49-loop samples to get 37 error-free samples.

• Use samples of different loop lengths

• Reduce the number of signatures with manual inspection: less than 7 500 observed 
signatures to obtain enough 49-loop observations for a full key recovery.



Conclusion

• We finally have f.

• Limitations: we can’t run the attack ourselves 
as all the EPID signatures are encrypted with 
Intel’s public key !

• A malicious Intel could break the unlinkability
guarantee.
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Thank you !

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, 
Ahmad Moghimi, and Yuval Yarom
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