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What? Why? Where? Cryptography … 

Secure communication Cryptographic protocols for: 

• Confidentiality  (encryption schemes) 

• Authentication and non-repudiation (signature schemes) 

• Integrity and validity of data (hash functions) 

• …
Eavesdropper
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Hard problems for Cryptography
Use (hopefully) intractable problems to construct cryptographic primitives.

Start from…
• factorisation 

• discrete logarithm 

• lattice problems 

• isogeny problems 

• …

… to obtain:

• encryption schemes 

• signature schemes 

• hash functions 

• …
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How can one attack a protocol based on the hardness of computing DL?



An example: EPID protocol in Intel SGX 
• What is EPID?  a protocol to allow remote attestation of a hardware platform without compromising the 

device’s identity. 

•The protocol includes a signing algorithm that uses pairings. 

                                             - secret key includes the element    

•How can we recover  ? 

                                      - During the protocol, consider a random secret nonce  

                                      - Compute an exponentiation       

                                      - Outputs the element     +   

f ∈R ℤq

f

r ∈ ℤq

Xr

s ← r cf ( hash of known values)c =
5



How can we recover the secret    ?f

 Since     +  ,    if we recover  , we directly get   .  s ← r cf r f

If we have as target  : 

1. Solve DLP to find exponent   in 3072-bit finite field  . 

2. Look at implementation vulnerabilities during the computation of .  

Xr

r 𝔽p12

Xr

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).
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How can we recover the secret    in EPID ?f

If we have as target  : 

1. Solve DLP to find exponent   in 3072-bit finite field  . 

2. Look at implementation vulnerabilities during the computation of .  

Xr

r 𝔽p12

Xr

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).
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Recovering partial information on  is enough to obtain  .r f

 Since     + ,    if we recover  , we directly get    .  s ← r cf r f



Implementation vulnerabilities
Exploiting leakage from side-channels 
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Vulnerable operation: modular exponentiation
Many protocols use modular exponentiation where the exponent is a secret. 

Example 1: Diffie-Hellman key exchange [DH76] 

• Public data:   

• Shared key:  

g, ga, gb ∈ G

gab ∈ G

Example 2: RSA signatures 

• The victim computes  where  is a the secret exponent. s = md (mod N) d
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Example 3: DSA signatures 

•Public data:  and  

• The victim computes a per-signature secret value  and . 

g p

k r = gk (mod p)



Modular exponentiation

Setup: Given a finite cyclic group  of order , a generator  and 
some element . For : 

G n g ∈ G
h ∈ G x ∈ [0,n)

Computing modular exponentiation is easy: gx = g ⋅ g ⋅ ⋯ ⋅ g

x

The inverse, solving DLP can be hard (depending on the group ):G h = g ⋅ g ⋅ ⋯ ⋅ g

??

algorithms in O(log(x))
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Square and multiple algorithms

• Faster than repeated multiplications. 

• Time of execution depends on the number of 1s. 

• Reduce the Hamming weight of the scalar : use wNAF representation.k



Non-adjacent form (NAF) and windowed-NAF

Definition: For any , a representation  is called a NAF if 

 and  for all .

k ∈ ℤ k =
∞

∑
j=0

kj2j

kj ∈ {0, ± 1} kjkj+1 = 0 j ≥ 0

• Impossible to have two consecutive non-zero digits. 

•Signed digits -1, 0, 1.

Windowed-NAF:

• Signed digits in a larger window:  for a window size .∈ [−2w + 1,2w − 1] w



A quick example
Example: 3 representations of 23:

• Binary: (1, 0, 1, 1, 1) 

• NAF: (1, 0, -1, 0, 0, -1) 

• wNAF (for ): (1, 0, 0, 0, 7)

23 = 24 + 22 + 21 + 20 =

23 = 25 − 23 − 20 =

w = 3 23 = 24 + 7 × 20 =

Often, implementations of fast modular exponentiation leak (partial) secret information!



What is partial information and where does it come from?

1. Side-channel attacks, in particular cache attacks. 

2. Many microarchitectural side-channel attacks use variations in execution time as the source of leakage. 

3. All the public-key algorithms we discuss involve fast modular exponentiation algorithm.

In this talk, we focus on what to do with the leaked information. 
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Microarchitectural side-channel attacks

Goal: recover secret information by artificially creating observable contentions between CPU execution units. 

• Microarchitectural elements shared between the victim and the attacker’s application. 

• The elements must have data-dependent state. 

• The data-dependent state must be observable  via side channels.

Common examples: 

• Microarchitectural element: cache components. 

• Cache attacks exploit contention on a shared cache. 

• Source of leakage: execution time of certain operations (modular exponentiation).



Main idea: the attacker measures the amount of time that it takes to load 
information from locations in the cache.

Prime + Probe [Per05, OST06]:

1. The attacker fills cache sets by sequentially loading memory addresses that map 
to the same set. 

2. The attacker waits for the victim to perform secret-dependent stores to the 
memory. When the victim stores data, it evicts some of the attacker’s cache lines. 

3.The attacker reloads previously cached memory addresses and measures access 
times to each cache sets.

• Longer time: victim accessed the set. 



Key recovery methods
I have obtained the following type of incomplete information 
about the secret key. Does it allow me to efficiently recover 
the rest of the key?

• algorithm considered, 

• nature of the information leaked.

Methods depend on:
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1. Consecutive bits known: 

2. Random known bits:

Coppersmith-style method

Branch and prune method

Key recovery for RSA: Two different scenarios for factorization



Two different scenarios

1. Consecutive bits known: 

2. Random known bits:

Coppersmith-style method

Branch and prune method



Coppersmith-style: using lattice reduction [Cop96]

Problem setup: Known RSA modulus . 

We know a large contiguous portion of the MSBs of .

N = pq

p

ap = + r
Finding roots of a polynomial: f(x) = x+ a   with   f(r) = p ≡ 0 (mod p)

We also know  is small: , and  is known.r |r | < R R

Constructing a lattice basis: 
All the quantities are known!



What happens next?
LLL

v = (v2R2, v1R, v0)

(shortest vector in reduced basis)

Constructing a new polynomial: g(x) = v2x2 + v1x + v0

Find the roots of g over the integers: reconstruct   and verify that  factors .p = r + a gcd(r + a, N) N

Why does this work?

x(x + a)
x + a
N } Each of these polynomials evaluated at x=r is 0 (mod p)

Idea: find a vector of length smaller than p.



Coppersmith’s method outline

Input:  f(x) ∈ ℤ[x], p ∈ ℤ Output:   such that  r f(r) ≡ 0 (mod p)

Intermediate output: a new polynomial g such that g(r) = 0  over . ℤ

1.  so  by construction. 

2. If , then we can bound: 

                       

g(x) ∈ < f(x), p > g(r) ≡ 0 (mod p)

|r | < R

|g(r) | = |v2r2 + v1r + v0 | ≤ |v2 |R2 + |v1 |R + |v0 | = | |v | |1

3.  If  and  then  over .|g(r) | < p g(r) ≡ 0 (mod p) g(r) = 0 ℤ

Construct g from short vector in the lattice! (det B)1/dim L < p



1. Construct a matrix of coefficient vectors of elements of . 

2. Run a lattice basis reduction algorithm on the matrix. 

3. Construct a new polynomial from the shortest vector output 

4. Factor the new polynomial to find its roots.

< f(x), N >

Coppersmith’s method:



Extending this method and limits
Known MSB or LSB or middle bits: this method works up to  by increasing the lattice dimension. 
[Cop96]

R < p1/2

Multiple chunks of unknown bits:  of the bits of  divided into at most  blocks. [HM08]70 % p log log N

Open problem: recover an RSA modulus in sub-exponential time with more than  unknown chunks.log log N

Open problem: Recover the key from the most significant half bits of  for small exponent .d e



Real-world example: Taiwan smart card IDs
Factoring RSA keys from certified smart cards: Coppersmith in the wild, Daniel J. Bernstein and Yun-An 
Chang and Chen-Mou Cheng and Li-Ping Chou and Nadia Heninger and Tanja Lange and Nicko van Someren 

Recover 1024-bit RSA keys generated by a faulty random number generator that generated primes with 
predictable sequences of bits.



Key recovery for DSA and ECDSA

(EC)DSA is the elliptic curve variant of the DSA signature algorithm.

Public parameters: 

• An elliptic curve E over a prime 
field 

• A generator G of prime order n 
on E 

• A hash function H to ℤq

Secret key: 

• An integer  α ∈ [1,n − 1]

Public key: 

• : scalar 
multiplication of G by 
pk = [α]G

α



To sign a message m:

• Step 1: Randomly select a nonce . 

• Step 2: Compute the point . 

• Step 3: Compute . 

• Step 4: Output the signature .

k ←R ℤn

(r, y) = [k]G

s = k−1(H(m) + αr) (mod n)

(r, s)

Scalar multiplication that can 
leak bits of k



The Hidden Number Problem [BV96]
An attacker can sign many messages and obtain a tuples . 

For each  we know the MSB:

((ri, si), ki)i

ki

Obtaining a system of linear equations: si ≡ k−1
i (H(mi) + αri) (mod n)

Eliminate terms and rearranging (2 signatures): k1 + tk2 + u ≡ 0 (mod n)

with  and t = − s−1
1 s2r1r−1

2 u = s−1
1 r12r−1

2 − s−1
1 h1

Idea: solve a linear equation with small unknowns.



Idea: solve a linear equation with small unknowns.

We have k1 + tk2 + u ≡ 0 (mod n) where |k1 | , |k2 | < K .

Construct a Coppersmith-type lattice where a short vector will contain the unknown  k1, k2 .

Why does this work? If the vector  has norm ,  it will appear in a 
reduced basis.

v = (k1, k2, K) | |v | |2 ≤ (det B)1/dim L



• What is EPID?  a protocol to allow remote attestation of a hardware platform without compromising the 
device’s identity. 

•The protocol includes a signing algorithm that uses pairings. 

                                             - secret key includes the element    

•How can we recover  ? 

                                      - During the protocol, consider a random secret nonce  

                                      - Compute an exponentiation       

                                      - Outputs the element     +   

f ∈R ℤq

f

r ∈ ℤq

Xr

s ← r cf ( hash of known values)c =
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A practical example: Attacking EPID signature protocol in Intel’s SGX

•  Since     +  ,    if we recover  , we directly get   .  s ← r cf r f



How can we recover the secret    ?f
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Goal: get information about the MSBs of the nonce .r
Idea: use Prime+Probe attack to count the number of iterations in the main loop of the scalar multiplication 
algorithm.



Example:

• Say the nonce  is of length 256 bits. 

• The nonce is recoded to a scalar of 52 digits. 

• The while loop will have 51 iterations.

r

The attack:

• Monitor cache access patterns during the computation of the main loop. 

• One period corresponds to one loop iteration.



Example:

• Say the nonce  is of length 256 bits.  has bits 256 and 255 equal to 0. 

• The nonce is recoded to a scalar of 52 digits. 51 digits. 

• The while loop will have 51 loop iterations. 50 loop iterations.

r

The attack:

• Monitor cache access patterns during the computation of the main loop. 

• One period corresponds to one loop iteration.



Analyzing the data

For many signatures and corresponding nonce  we know how many MSBs are equal to 0.ri

|ri | < K Create an instance of th Hidden Number Problem to recover the secret.

Result: using only 49-loop samples in the lattice, i.e., learning 7 MSB of the nonce, we need 38 samples to 
achieve above 50% success rate.



Attacking EPID signing algorithm
38 signatures with HNP to recover the key in 4.5 seconds 
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CVE: Common Vulnerabilities and Exposures



The Extended Hidden Number Problem [HR07]
Another type of leakage…

Same idea: every unknown chunk of the nonce introduces a new variable.

Problem: much bigger lattice dimension. If m is the number of signatures, h the number of unknown chunks.

HNP: m + 2

EHNP: mh + 1

37 signatures with HNP to recover the key in 4.5 seconds 

3 signatures with EHNP to recover the key in 5 days



Related publications

- Recovering cryptographic keys from partial information, by example, with Nadia Heninger, Eprint 2020/1507 

- CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache attacks, with Fergus Dall, 
Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi and Yuval Yarom, at CHES 2018 

- A Tale of Three Signatures: practical attack of ECDSA with wNAF, with Cécile Pierrot and Rémi Piau, at 
Africacrypt 2020
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Thank you for your attention!


