
École doctorale IAEM Lorraine

Discrete Logarithm Cryptanalyses:
Number Field Sieve and Lattice Tools

for Side-Channel Attacks

THÈSE

soutenue le 25 mai 2021

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Gabrielle De Micheli

Composition du jury

Président : Steve Kremer Directeur de recherche, INRIA, Nancy, France

Rapporteurs : Martin Albrecht Professor, Royal Holloway, University of London, Royaume-Uni
Frederik Vercauteren Associate professor, KU Leuven, Belgique

Examinateurs : Robert Granger Lecturer, University of Surrey, Royaume-Uni
Tanja Lange Professor, Technische Universiteit Eindhoven, Pays-Bas
Palash Sarkar Professor, Indian Statistical Institute, Inde

Encadrants : Pierrick Gaudry Directeur de recherche, CNRS, Nancy, France
Cécile Pierrot Chargée de recherche, INRIA, Nancy, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503





i



ii



iii

Remerciements

I would like to express my deep gratitude to my PhD advisors Pierrick Gaudry and Cécile Pierrot for
giving me the opportunity to explore in depth the fascinating topic of discrete logarithms and providing
invaluable guidance throughout this PhD. I would like to thank them for their patience, enthousiasm and
advice which greatly contributed to the concretization of this thesis.

Moreover, I would like to thank Martin Albrecht and Frederik Vercauteran who kindly agreed to
review my thesis and provided me with useful comments to improve the quality of this manuscript. I
would also like to thank Robert Granger, Steve Kremer, Tanja Lange and Palash Sarkar who agreed to
be on my thesis committee.

My thanks also go to all the members of the Penn security group where I spent my first PhD years,
and in particular to Nadia Heninger for guiding my first steps in the research world. My PhD journey
continued in the Caramba team in Nancy, France and this experience would not have been the same
without the incredible kindness of all the members of the Caramba team and the Loria institute. Thank
you for sharing your knowledge and passion.

Finally, this work would not have been possible without the encouragement of many friends and family
around the world. A particular thanks goes to my cousins in Germany for the many enjoyable weekends
spent decompressing away from the computer and to my parents for their constant support.

“From their lofty summits I view my past, dream of the future and, with an unusual acuity, am allowed
to experience the present moment.... my vision cleared, my strength renewed." Anatoli Boukrev



iv



Contents

Introduction 1

1 Public-key cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Estimating the hardness of DLP in finite fields . . . . . . . . . . . . . . . . . . 5

2.2 Exploiting implementation vulnerabilities from fast exponentiation . . . . . . 7

2.3 Other contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Preliminaries 11

1 Overview of algorithms for the discrete logarithm problem 13

1.1 Generic algorithms for the discrete logarithm problem . . . . . . . . . . . . . . . . . . 14

1.1.1 Pohlig-Hellman’s reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Baby-step Giant-step algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.3 Pollard algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Index Calculus methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Index calculus algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Small, medium and large characteristics . . . . . . . . . . . . . . . . . . . . . 20

1.3 The general setting of FFS, NFS and its variants . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Overview of the algorithms: a general presentation . . . . . . . . . . . . . . . 24

1.3.2 Description of the variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Lattices and related hard computational problems 31

2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Euclidean lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Algorithmic problems related to Euclidean lattices . . . . . . . . . . . . . . . 34

2.1.3 Ideal and module lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.4 Random lattices and random bases . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Enumeration to solve exact SVP and CVP . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 General framework of enumeration algorithms . . . . . . . . . . . . . . . . . . 39

2.2.2 Constructing an enumeration tree . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 The complexity of enumeration algorithms . . . . . . . . . . . . . . . . . . . . 42

2.3 Reduction algorithms for Euclidean lattices . . . . . . . . . . . . . . . . . . . . . . . . 43

v



2.3.1 The LLL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Analyzing LLL via a directed graph . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.3 The BKZ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II The discrete logarithm problem in finite fields 51

3 Asymptotic analysis of DLP algorithms at the first boundary 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Motivation: pairing-based protocols . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The FFS algorithm at the boundary case . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Complexity analysis of FFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 The pinpointing technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Fixing a rounding bug in the FFS analysis of [SS16a] . . . . . . . . . . . . . . 58

3.2.4 Improving the complexity of FFS in the composite case . . . . . . . . . . . . . 59

3.3 Tools for the analysis of NFS and its variants . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 General methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Smoothness probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Methodology for the complexity analysis of NFS . . . . . . . . . . . . . . . . . 63

3.4 Polynomial selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Polynomial selections for NFS and MNFS . . . . . . . . . . . . . . . . . . . . 64

3.4.2 Polynomial selections for exTNFS and MexTNFS . . . . . . . . . . . . . . . . 66

3.4.3 Polynomial selections for SNFS and STNFS . . . . . . . . . . . . . . . . . . . 67

3.5 Complexity analyses of (M)(ex)(T)NFS . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 (M)NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 (M)exTNFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.3 S(T)NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Crossover points between NFS, FFS and the Quasi-Polynomial algorithms . . . . . . 73

3.6.1 Quasi-Polynomial algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.2 Crossover between FFS and QP . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.3 Crossover between NFS and FFS . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Considering pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7.1 Landing at p = LQ(1/3) is not as natural as it seems . . . . . . . . . . . . . . 75

3.7.2 Fine tuning of cp to get the highest security . . . . . . . . . . . . . . . . . . . 76

3.7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Enumeration algorithms for algebraic sieving in TNFS 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 The Tower Number Field Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



4.2.1 Mathematical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 A step by step walk through TNFS . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Virtual logarithms and Schirokauer maps . . . . . . . . . . . . . . . . . . . . . 88

4.3 Focus on the relation collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 The special-q setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Different algorithms for sieving . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3 Other algorithms to find smooth norms . . . . . . . . . . . . . . . . . . . . . . 95

4.3.4 Combining three algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.5 Filtering through equivalent relations . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Relation collection with lattice enumeration . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Existing algorithms to enumerate LQ,p ∩ S . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Why do we choose a d-sphere? . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Schnorr-Euchner’s enumeration algorithm for TNFS . . . . . . . . . . . . . . . 104

4.4.4 Analysis of the enumeration algorithm . . . . . . . . . . . . . . . . . . . . . . 105

4.4.5 Overall complexity of relation collection . . . . . . . . . . . . . . . . . . . . . 109

4.5 Comparing with other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.1 Comparing with [Gré18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.2 Comparing with [MR21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 An implementation and a 521-bit Fp6 record with TNFS 113

5.1 Our target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Polynomial selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Collecting relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Adjusting parameters before sieving . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Analyzing the sieving step: enumerating in a lattice . . . . . . . . . . . . . . . 116

5.3.3 Balancing sieving, batch and ECM . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.4 From a set of relations to a matrix . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Duplicates and filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.2 Schirokauer maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.3 Solving the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Descent step and discrete logarithm of the target . . . . . . . . . . . . . . . . . . . . 126

5.6 Comparing with NFS computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Size of norms in our TNFS computation . . . . . . . . . . . . . . . . . . . . . 127

5.6.2 Comparing with factoring with NFS . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6.3 Comparing with DLP with NFS . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6.4 Comparing with other high-dimension sieves . . . . . . . . . . . . . . . . . . . 130

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

vii



III Partial key recovery from side-channel information 131

6 Overview of partial key recovery methods 133

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Key recovery methods for RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 RSA Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.2 RSA Key Recovery with Consecutive bits known . . . . . . . . . . . . . . . . 142

6.2.3 Non-consecutive bits known with redundancy . . . . . . . . . . . . . . . . . . 151

6.3 Key recovery methods for DSA and ECDSA . . . . . . . . . . . . . . . . . . . . . . . 153

6.3.1 DSA and ECDSA preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.2 (EC)DSA key recovery from most significant bits of the nonce k . . . . . . . . 155

6.4 Key recovery method for the Diffie-Hellman Key Exchange . . . . . . . . . . . . . . . 161

6.4.1 Finite field and elliptic curve Diffie-Hellman preliminaries . . . . . . . . . . . 161

6.4.2 Most significant bits of finite field Diffie-Hellman shared secret . . . . . . . . . 162

6.4.3 Discrete log from contiguous bits of Diffie-Hellman secret exponents . . . . . . 163

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Cachequote: attacking EPID signature protocol in SGX with HNP 167

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.1.2 Targeted Software and Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.1 Using a cache attack: Prime+Probe . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.2 Intel SGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.3 Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.4 Enhanced Privacy ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 SGX EPID Provisioning and Attestation . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.1 Provisioning and Quoting Enclave Implementations . . . . . . . . . . . . . . . 173

7.3.2 Scalar Multiplication in the Quoting Enclave . . . . . . . . . . . . . . . . . . . 173

7.4 Short Scalar Leakage via High Resolution Side Channels . . . . . . . . . . . . . . . . 174

7.4.1 Controlled Prime+Probe Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.4.2 Loop Counting Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 A Lattice Attack on EPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.5.1 Conversion to a Hidden Number Problem . . . . . . . . . . . . . . . . . . . . . 177

7.5.2 Solving the Hidden Number Problem . . . . . . . . . . . . . . . . . . . . . . . 177

7.5.3 Performance Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.5.4 Recovering f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

viii



8 Attacking ECDSA signature protocol with EHNP 181
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.2 Attacking ECDSA using lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.1 Using EHNP to attack ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.2 Constructing the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.3 Improving the lattice attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.3.1 Reducing the lattice dimension: the merging technique . . . . . . . . . . . . . 187
8.3.2 Preprocessing the traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.5 Error resilience analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.5.1 Tables for error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.6 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Conclusion 195

Bibliography 197

Résumé en Français 215

ix



x



Introduction

1 Public-key cryptography
Cryptography concerns itself with the problem of exchanging encrypted, meaning unintelligible, messages
that only a legitimate receiver can decrypt, hence read. In order to achieve a secure transmission of these
messages, a secret key is usually shared between the sender and the receiver. This poses the significant
difficulty of securely exchanging the aforementioned secret key.

In the early 1970s, Merkle started deviating from this concept of shared key and his ideas published
in 1978 [Mer78] were further carried out in the seminal work of Diffie and Hellman [DH76], New directions
in Cryptography. In their paper, Diffie and Hellman formalize the notion of public-key cryptography where
two mathematically related keys are now generated and used: a public key and a secret key. A message is
then encrypted using the receiver’s public key. The latter will then be the only one capable of decrypting
the message using his corresponding secret key.

Public-key cryptosystems, also known as asymmetric protocols, are all built with the notion of one-
way function in mind. The latter corresponds to a function that is easy to compute for any given input
but hard to invert. This notion befits the requirements of an asymmetric protocol. Indeed, for a protocol
to be secure and efficient, decrypting a message without the secret key should be close to impossible,
whereas encrypting a message and decrypting with the secret key should be easy, i.e., only done with
simple operations.

It is naturally towards hard mathematical problems that cryptographers have looked to find suitable
primitives for their protocols. Historically, two candidates emerged: the multiplication of two prime
numbers and modular exponentiation. Inverting these functions consists in factoring an integer and
computing a discrete logarithm. The hardness of factoring is at the heart of the well-known and deployed
RSA cryptosystem [RSA78]. In this thesis, we will focus on the second candidate: modular exponentiation
and its reverse operation, the computation of a discrete logarithm.

Modular exponentiation and discrete logarithm
Modular exponentiation consists in computing the remainder of a Euclidean division of an integer g
raised to a power x by a positive integer N , i.e., calculating gx (mod N). This operation is fundamental
in computational number theory where it can be seen for example in Fermat’s Little Theorem used for
primality testing. Modular exponentiation is also extensively used in public-key cryptography where
elements of groups such as multiplicative groups of finite fields, Z/NZ or the group of rational points of
elliptic curves, are often raised to large powers.

For practicality reasons, operations used in cryptographic protocols should be easy and efficient to per-
form. The attractiveness of modular exponentiation for cryptography comes in part from the simplicity
of its computation. Indeed, computing a modular exponentiation can be narrowed down to multiplying g
by itself x − 1 times and then taking the result modulo N . However, this would be very inefficient in
a cryptographic context due to the size of the numbers involved. Hence, in order to construct practi-
cal cryptographic schemes that make use of modular exponentiation, the operation must be efficiently
performed.

The efficiency of the algorithms that compute modular exponentiation depends on a variety of pa-
rameters such as the group considered, the representation of the exponent or the hardware used. Because
modular exponentiation is present in many protocols, and is often the most costly operation of the
protocol, throughout the years, many optimized algorithms have piled up to improve its computation.

1



Most algorithms that attempt to optimize modular exponentiation aim at reducing the number of
multiplications necessary. One of the oldest and simplest method is the Square-and-Multiply algorithm.
The method appeared over 2000 years ago in India [Knu97]. The algorithm operates bit by bit over the
bits of the exponent and only performs a multiply operation if that bit of the exponent is 1.

More sophisticated modular exponentiation algorithms make use of different representations of the
exponent such as the Non-Adjacent Form (NAF) or its window variant (wNAF). We refer the reader
to [Gor98] for a survey on fast exponentiation methods.

While much effort has been put into optimizing the algorithms for modular exponentiation, these
optimizations have brought forth exploitable vulnerabilities. Indeed, the operations performed in these
algorithms are often dependent on the bitvalues of the exponent. The execution of the code can then
generate observable leakage from which information can be deduced about the exponent. The specific
character of the information leaked depends on the implementation details of the algorithm and often
the hardware itself. Side-channel attacks and in particular cache attacks are the main threats to consider
when using a fast modular exponentiation algorithm for a protocol.

The inverse operation of modular exponentiation is the computation of a discrete logarithm. The
study of discrete logarithms and related algorithms preceed their use in cryptography. Indeed, as early
as the 19th century, Zech’s logarithms are used to speed up arithmetic operations in finite fields.

In cryptography, the Diffie-Hellman protocol from the late 70s marked a turning point in the study of
discrete logarithms. The more recent use of discrete logarithms in pairing-based protocols which began
in the early years 2000, revived the interest in the subject. Concretely, a discrete logarithm is defined as
follows.

Definition 1 (Discrete logarithm). Given a finite cyclic group G of order n, a generator g ∈ G, and
some element h ∈ G, the discrete logarithm of h in base g is the element x ∈ [0, n[ such that gx = h.

This definition provides the following problem.

Definition 2 (The discrete logarithm problem (DLP)). Given a finite cyclic group G of order n, a
generator g ∈ G, and some element h ∈ G, find x such that gx = h.

The latter problem is considered hard for most groups G and thus is a promising candidate for
public-key cryptography.

Question 1. Where can discrete logarithms and modular exponentiations be found in cryptography?

Widely deployed cryptosystems such as the Diffie-Hellman key exchange protocol, ElGamal’s encryption
protocol or signature schemes such as (EC)DSA base their security on assumptions related to the hardness
of the discrete logarithm problem. We describe some of these protocols.

The Diffie-Hellman key exchange protocol [DH76]. The protocol is rather straightforward. Two
entities, Alice and Bob, wish to communicate and to do so they must first agree on a secret key. They
start by choosing a group G of order n and a generator g of this group, which are now public parameters.
Alice then chooses a random element a ∈ [0, n[ and sends the group element ga to Bob via a public
channel. Similarly, Bob chooses b ∈ [0, n[ and sends gb to Alice. The quantities, g, ga, gb are all public.
Both Alice and Bob can now compute the quantity

s = (ga)b = (gb)a,

which constitutes the shared secret used for future communications.
An attacker who wishes to eavesdrop on any conversation between Alice and Bob must recover the

secret value s. Recovering gab from g, ga, gb is known as the computational Diffie-Hellman problem which
is closely related to computing discrete logarithms [MW96]. The Diffie-Hellman key exchange protocol
became a standard in 2003 (ANSI X9.42) and is used in widely-deployed protocols such as HTTPS/TLS,
SSH.

2



The ElGamal encryption scheme [ElG85]. The ElGamal encryption protocol is closely linked
to the Diffie-Hellman key exchange. Alice wants to send an encrypted message to Bob. As for any
public-key encryption protocol, Bob needs to generate a pair of keys, a public and a private one which
are mathematically related. To do so, he chooses a group G of order n along with a generator g of G.
Bob’s private key will be an element b ∈ [0, n[ randomly chosen and known only by Bob. The public key
are the elements (G, g, gb).

In order to encrypt a given message m seen as an element of G, Alice will use Bob’s public key. Alice
starts by choosing a random element r ∈ [0, n[ and computes the quantity c = m · (gb)r. Alice also
computes c′ = gr. The ciphertext is thus composed of the two quantities (c, c′) which Alice sends to Bob.

Once Bob receives the ciphertext, he can decrypt the message m by using his private key b. Indeed,
Bob computes c(c′b)−1 = m.

An eavesdropper who intersects the ciphertext (c, c′) and wishes to decrypt it would have to solve the
computational Diffie-Hellman problem. The ElGamal encryption scheme is extensively used for voting
systems [BW14].

The ElGamal signature scheme [ElG85]. Consider G = (Z/pZ)∗ for a prime p. Alice wants to
send a message m to Bob and in addition she wants to sign the message in order to authenticate it.
Similarly as above, she possesses a pair of secret/public keys (a, ga) where g is a generator of the group G
considered. To generate her signature, Alice selects a random integer k ∈ [0, p− 1] where p is the prime
order of G, and such that k and p−1 are coprime. She then computes the two quantities r = gk (mod p)
and s = (m− ar)k−1 (mod p− 1). Her signature is the pair (r, s) and she sends it to Bob along with the
message m.

If Bob wants to verify the validity of the message, he verifies Alice’s signature using her public key.
From the generation of the signature, we know that m = ar + sk (mod p− 1). Since Bob knows Alice’s
public key ga, we can compare the quantities gm and gargsk modulo p.

Other signature schemes such as the Digital Signature Algorithm (DSA) from 1991 (specifications
in FIPS 186-4 [NIS13]), a variant of the ElGamal signature scheme, and its elliptic curve variant
ECDSA [JMV01], are also standardized protocols based on the hardness of DLP.

Pairing-based protocols. Pairing-based cryptography is at the heart of numerous security products
that are brought to market and research on efficient primitives using them is very active. This is the case
in particular in the zero-knowledge area with the applications of zk-SNARKs to smart contracts.

Zero-knowledge proofs allow for a verifier to certify that a prover has knowledge of a secret without
revealing information about the secret itself. Zk-SNARKs, Zero-knowledge Succinct Non-interactive
Argument of Knowledge, are examples of protocols, widely used in smart contracts for example, that make
use of zero-knowledge proofs. Many of these protocols use pairings in their constructions. Evaluating the
security of those schemes is thus fundamental. Concretely, a cryptographic pairing is defined as follows.

Definition 3 (Cryptographic pairing). Consider the finite Abelian groups G1, G2, and GT of order
n. A cryptographic pairing is a map

e : G1 ×G2 → GT ,

which is

• bilinear, meaning that for any a, b ∈ [0, n[, P ∈ G1 and Q ∈ G2 we have

e(aP, bQ) = e(P,Q)ab,

• non-degenerate, meaning that for any P ∈ G1, there exists a Q ∈ G2 such that e(P,Q) 6= 1 and
for any Q ∈ G2 there exists a P ∈ G1 such that e(P,Q) 6= 1,

• and computable in polynomial time in the input size.

The security of pairing-based protocols relies on the hardness of the discrete logarithm problem. In-

3



deed, in the early 2000s, pairing-based cryptography introduced new schemes such as identity-based
encryption schemes [BF01], identity-based signature schemes [CC03], short signature schemes [BLS01]
or blind signature schemes used for example in Intel’s SGX enclaves (see Chapter 7) whose security
is based on pairing-related assumptions that become false if the DLP is broken. To construct a secure
protocol based on a pairing, one must thus assume that the DLPs in all three groups G1,G2,GT are hard.

A natural question arises from the above descriptions of the schemes and the discrete logarithm
problem.

Question 2. What group G should be chosen?

Evaluating the hardness of DLP has long been an active field of study with many algorithms to solve
DLP that appeared over the years. These algorithms vary in their construction and their complexity
depends on the group G considered. Cryptography renewed the interest in the discrete logarithm problem
over specific groups. In practice, the group G in the definition of the discrete logarithm problem is chosen
to be either the multiplicative group of a finite field Fpn or the group of rational points on an elliptic
curve E defined over a finite field.

Pairing-based cryptography illustrates the need to consider the discrete logarithm problems on both
finite fields and on elliptic curves. Indeed, the groups considered for a cryptographic pairing are usu-
ally G1, a subgroup of E(Fp), the group of points of an elliptic curve E defined over the prime field Fp,
G2, another subgroup of E(Fpn) where we consider an extension field and GT a multiplicative subgroup
of that same finite field Fpn .

Interestingly enough, the group of rational points on an elliptic curve E defined over a finite field
does not provide any useful representation to speed up the computation of a discrete logarithm. Hence,
the best known algorithms to solve DLP over this group are the generic algorithms with square-root
complexity.

On the other hand, considering the discrete logarithm problem in finite fields Fpn have led to con-
siderable improvements in the efficiency of the algorithms that solve it. The nature and complexity
of these algorithms depend on the characteristics of the finite field and more precisely the relation be-
tween the characteristic p and the extension degree n. The most efficient algorithms to solve DLP in
finite fields come from the family of index calculus algorithms. Among those algorithms we have the
Function Field Sieve (FFS), the Number Field Sieve (NFS) and its many variants, and the more recent
Quasi-Polynomial (QP) time algorithms. An overview of all these algorithms is the focus of Chapter 1.

In 1994, Shor introduced a polynomial time quantum algorithm to compute discrete logarithms. This
implies that no scheme relying on the hardness of DLP would be secure in the presence of quantum
computers, regardless of the group considered. However, as of today, quantum computers capable of
doing large scale computations are non-existent, even though impressive progress has been made in the
recent years (see [AAB+19] for a recent 53-qubit machine). Therefore, we will restrict this thesis to the
classical setup.

An alternative candidate: lattices
In the past decades, motivated by the upcoming threat of accessible quantum computers, new promising
candidates have emerged to construct public-key protocols: lattices, isogenies, error-correcting codes,
multivariate polynomials and hash functions. We focus here on lattices.

The study of lattices in mathematics started as early as the 18th century. Mathematicians such
as Gauss, Lagrange and Minkowski studied lattices in the context of geometry of numbers and convex
geometry, more specifically for the reduction theory of quadratic forms which then led to the well-known
Gauss’ algorithm. It is not until the 1980s that lattices are studied from a computational point of view
and used in areas closer to computer science such as combinatorial optimization and cryptography.

In cryptography, lattices are first used to break cryptosystems. Algorithms such as the Lenstra,
Lenstra, Lovász (LLL) algorithm [LLL82] are developed to give approximate solutions to hard lattice
problems and are extensively used for cryptanalysis. In 1982, Shamir [Sha82] used the LLL algorithm to
break the Merkle-Hellman cryptosystem. In 1996, Coppersmith [Cop96b, Cop96a] proposed a method

4



that allows to factor an integer n when bits of the factors of n are known, using lattice basis reduction
algorithms such as LLL, thus affecting the security of the RSA cryptosystem.

The use of lattices for the design of cryptographic protocols only started in 1996 with the work of
Ajtai [Ajt96]. The first cryptosystems to ever use lattices as building blocks are the Ajtai-Dwork [AD97]
and NTRU [HPS98] cryptosystems in the late 90s. Today, lattice-based cryptography is a prominent field
of study with many lattice-based protocols as candidates in the NIST post-quantum competition. In this
thesis we will not consider protocols built on the hardness of lattice-related problems. However, we will
use lattice techniques in two different setups:

• we use lattice reduction algorithms to either produce polynomials with small coefficients, see Chap-
ter 3 or to find small roots of modular polynomials, see Part III.

• we use lattice enumeration algorithms, in particular an adaptation of the Schnorr-Euchner algo-
rithm, to speed up the search of algebraic relations in the context of discrete logarithm computations,
see Chapter 4.

Background on lattices and related algorithms is thus given in Chapter 2.

Remark 1. In this thesis, we will talk about lattice sieving and algebraic sieving. These two notions
do not refer to the same thing! Algebraic sieving usually refers to a step of the Number Field Sieve
(NFS) algorithm whereas lattice sieving such as the Gauss Sieve refers to a lattice algorithm that finds
short vectors. Lattice sieving can also be found in the context of NFS. We specify which sieving is being
considered when the context is not clear.

2 Contributions
The goal of this thesis is to answer the following question.

Question 3. How can we assess the security of protocols in which a modular exponentiation involving
a secret is performed?

The answer to this question is two-fold.

1. Solving the discrete logarithm problem gives direct access to the exponent, hence the secret. Thus,
we want to estimate the hardness of DLP in the groups considered by the protocols.

2. Looking at implementation vulnerabilities during fast exponentiation can also lead to the secret
exponent. Thus, we also want to assess and study the attacks rendered possible by side-channel
leakage.

These two points will shape the structure of this thesis.

2.1 Estimating the hardness of DLP in finite fields
One way of estimating the security of protocols based on the hardness of the discrete logarithm problem
is to directly study the complexity of the algorithms that solve the latter. As mentioned above, this is
highly dependent on the group considered. In this thesis, we will focus on estimating the hardness of
DLP for specific finite fields.

Question 4. Which finite fields do we focus on and why?

Finite fields Fpn are usually separated into three families referred to as small, medium and large charac-
teristic based on the relation between the characteristic p and the extension degree n of the finite field.
As of today, the fastest known algorithms to solve DLP are the Quasi-Polynomial time algorithms for
finite fields of small characteristic [BGJT14, KW19].

However, in this thesis, we will concern ourselves with finite fields ranging from the boundary between
small and medium characteristic up to large characteristic. Indeed, because these families do not provide
the fastest known algorithm to solve DLP, they concern most of the finite fields used in practice, for

5



small characteristic medium characteristic

QP Variants of NFS

Boundary case

FFS Variants of NFS

Figure 1: Representation of the finite fields and related algorithms studied in Chapter 3.

example in pairing-based protocols. Hence, estimating the hardness of DLP for these families have a
significant impact on our understanding of the security of widely-deployed protocols.

Our first motivation concerns the security of pairing-based protocols. If we want a pairing to be secure,
we want to balance the complexity of the square-root algorithm that computes discrete logarithms in the
relevant subgroup of the elliptic curve considered, and the complexity of the best-known algorithm that
solve DLP in the finite field. This brought us to study the algorithms from the index-calculus family
mentioned above at the boundary between small characteristic finite fields and medium characteristic
ones. The asymptotic complexities of these algorithms at this boundary case was, up to this thesis, non-
existent in the literature. This study also allowed us to provide precise crossover points between these
numerous complexities. This will be the focus of Chapter 3, illustrated in Figure 1. From this analysis,
we were finally able to provide further information about security parameters for pairing-based protocols.
More precisely, this chapter answers the following question.

Question 5. Asymptotically what finite field Fpn should be considered in order to achieve the highest
level of security when constructing a pairing?

In this chapter, we give optimal values for characteristic p and extension degree n, also taking into
account the so-called ρ-value of pairing constructions. Surprising fact, we were also able to distinguish
some special characteristics that are asymptotically as secure as characteristics of the same size but
without any special form. The following paper summarizes our results.

1. Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite
fields, with Pierrick Gaudry and Cécile Pierrot, published in the proceedings of Crypto 2020.

Another way of having better security estimates is to run large scale experiments with variants of
the Number Field Sieve. Indeed, the Number Field Sieve algorithm gave rise to many variants, each
attempting to lower the asymptotic complexity of the original algorithm. One of these variants is the
Tower Number Field Sieve (TNFS). The latter exploits the algebraic structure of towers of number fields.
Despite the fact that in theory the variant is more than promising, no implementations and thus record
computations had been done using TNFS, up to this thesis.

A major obstacle to an efficient implementation of TNFS is the collection of algebraic relations where
equations between small elements of number fields must be found. The case of TNFS is more complex
than NFS as this relation collection happens in dimension greater than 2. This requires the construction
of new sieving algorithms which remain efficient as the dimension grows. In Chapter 4, we overcome
this difficulty by considering a lattice enumeration algorithm which we adapt to this specific context.
We also consider a new sieving area, a high-dimensional sphere, whereas previous sieving algorithms (for
dimension 2 and 3) considered an orthotope.

This allowed us to perform the first record computation of a discrete logarithm with TNFS in a 521-bit
finite field Fp6 . The target finite field Fp6 chosen is of the same form than finite fields used in recent
zero-knowledge proofs in some blockchains. This record computation was announced in February 2021.

2. Discrete logarithm in GF(p6) with Tower NFS with Pierrick Gaudry and Cécile Pierrot,
announced in the NumberTheory mailing list. Related article in submission process.

6



Details about both the implementation and the computation are provided in Chapter 5. As can be
seen in Table 1, our algorithm is much faster than existing high-dimensional sieving algorithms despite
the larger dimension and the larger finite field.

Parameters [GGMT17] [MR21] This thesis
Algorithm NFS NFS TNFS

Field size (bits) 422 423 521
Sieving dimension 3 3 6

Sieving time 201,600 69,120 23,300

Table 1: Comparison of the relation collection step in core hours with [GGMT17] and [MR21] for Fp6 .

Both these works contribute to estimating the hardness of DLP in finite fields by studying the asymp-
totic complexities of the relevant algorithms and providing an actual record computation with TNFS.
The considerations made on the security of pairings should complete the practical estimates found in the
literature and hopefully point the cryptanalysts to the right parameter choices. The practical perfor-
mance of TNFS with our new sieving algorithm is promising and indicates that larger finite fields could
be reached in a reasonable amount of time. In general, record computations provide further indications
on the gap between the recommended key sizes for protocols based on DLP and what is computationally
feasible.

2.2 Exploiting implementation vulnerabilities from fast exponentiation
The security of deployed protocols not only relies on the hardness of the underlying mathematical problem
but also on the implementation of the algorithms involved.

Vulnerable implementations of fast modular exponentiation have often been the target of microar-
chitectural side-channel attacks where secret information is recovered by creating observable contentions
between different CPU execution units. In particular, timing attacks exploit variations in execution time
which is common in modular exponentiation algorithm.

In Chapter 6, we present an overview of the techniques known to recover secret keys from partial
information. The leaked information, usually a certain amount of bits of a secret element of the protocol,
is illustrated in Figure 2.

Secret exponent

Knowledge of partial information (bits)

Figure 2: Example of representation of leaked partial information from a side-channel attack.

Numerous techniques to recover secret keys from partial information exist depending on the nature
of the information recovered by the side-channel attack and on the specificities of the algorithm used.
This chapter presents the most useful techniques along with a comprehensive classification on what is
known to be efficient for the most commonly encountered scenarios in practice. We focus on the widely-
used algorithms which are the most popular targets for attacks, i.e., RSA, (EC)DSA and (elliptic curve)
Diffie-Hellman. Our results appear in the following paper.

3. Recovering cryptographic keys from partial information, by example, with Nadia Heninger.
Available on Eprint:Report 2020/1506.

The techniques presented in Chapter 6 have often led to real-world attacks on deployed protocols. In
this thesis, we focus on two of these techniques which rely on lattice constructions: the Hidden Number
Problem and the Extended Hidden Number Problem.

In Chapter 7, we investigate the security of the Intel implementation of the Extended Privacy ID
(EPID) protocol, a remote authentication and attestation protocol. We identify an implementation

7



weakness that leaks information via a cache side channel. This leaked information allows us to mount a
lattice-based approach for solving the Hidden Number Problem, which we adapt to the zero-knowledge
proof in the EPID scheme, extending prior attacks on signature schemes. This work shows that a malicious
attestation provider can use the leaked information to break the unlinkability guarantees of EPID. We
also give experimental evidence that the lattice attack can still succeed even when a small number of
erroneous traces are included. These results are reported in the following paper.

4. CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache At-
tacks, with Fergus Dall, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi
and Yuval Yarom, published in IACR Transactions on Cryptographic Hardware and Embedded
Systems,Volume 2, 2018.

We finally focus on the security of the ECDSA protocol when the nonce k used in the signing algorithm
as modular exponent is expressed in wNAF form. In Chapter 8, we reinvestigate the construction of the
lattice used in the Extended Hidden Number Problem (EHNP). We find the secret key with only 3
signatures, thus reaching a known theoretical bound, whereas best previous methods required at least 4
signatures in practice. Given a specific leakage model, our attack is more efficient than previous attacks,
and for most cases, has better probability of success. We also provide a first error-resilience analysis of
EHNP. This work is described in the following paper.

5. A Tale of Three Signatures: Practical Attack of ECDSA with wNAF, with Cécile Pierrot
and Rémi Piau, published in the proceedings of Africacrypt 2020.

By considering real-world targets such as EPID in Intel’s architecture and the widely-deployed ECDSA
algorithm, we show throughout these works that even if the right parameters are considered for the dis-
crete logarithm problem to remain hard enough to solve for cryptographic purposes, attacks can come
from vulnerable implementations of modular exponentiation. In order to truly evaluate the security of
deployed public-key cryptosystems, one must concurrently consider the threats from the mathematical
primitive itself and the implementation of the algorithms.

The contributions and the organization of the thesis are summarized in Figure 3.

Estimating the security of dis-
crete logarithm-based protocols.

Hardness of
DLP for Fpn .

Implementation
vulnerabilities.

Chapter 3: asymptotic complexities
for pairing-relevant finite fields.

Chapter 4: lattice enumeration for
fast relation collection in TNFS.

Chapter 5: 521-bit Fp6 record com-
putation with TNFS.

Chapter 6: key recovery methods
with partial information.

Chapter 7: attacking EPID proto-
col in SGX.

Chapter 8: attacking ECDSA with
wNAF form.

Figure 3: Organization of the contributions of this thesis.

2.3 Other contributions
Overstretched NTRU is a variant of NTRU with a large modulus. Recent lattice subfield and subring
attacks have broken suggested parameters for several schemes. There are a number of conflicting claims in
the literature over which attack has the best performance. These claims are typically based on experiments
more than analysis.

In this work, we argue that comparisons should focus on the lattice dimension used in the attack.
We give evidence, both analytically and experimentally, that the subring attack finds shorter vectors and

8



thus is expected to succeed with a smaller dimension lattice than the subfield attack for the same problem
parameters, and also to succeed with a smaller modulus when the lattice dimension is fixed.

Because the thematic of this work is outside the main theme of this thesis, we do not include it in the
manuscript. The following paper summarizes these results.

6. Characterizing overstretched NTRU attacks, with Nadia Heninger and Barak Shani. At
Mathcrypt 2018, published in Journal of Mathematical Cryptology, Volume 14, no. 1, 2020.

9



10



Part I

Preliminaries

11





Chapter 1

Overview of algorithms for the discrete
logarithm problem

The discrete logarithm problem (DLP) plays a central role in public-key cryptography as the security
of many protocols relies on its hardness. In order to evaluate the difficulty of solving DLP in particular
groups, one must analyze the complexity of the known algorithms that solve DLP in these groups.

In this chapter, we present both heuristic and provable algorithms that solve the discrete logarithm
problem. The construction of these algorithms as well as their complexities highly depend on the group
considered.

In Section 1.1, we present some of the oldest examples of algorithms that appeared in a context
that preceeded the importance of discrete logarithms in cryptography. These algorithms are known as
generic algorithms and have a square root complexity in the size of the group. The most well-known
are the Baby-step Giant-step algorithm and Pollard’s algorithms. The complexity of these algorithm can
be further reduced when the order of the group is composite using Pohlig-Hellman’s reduction. These
algorithms work for arbitrary groups as they make no use of possible specificities of the group structure.

However, the particular structure of groups such as multiplicative groups of finite fields can lead
to more efficient algorithms. This is the case of the family of index calculus algorithms, presented in
Section 1.2. The latter also find their origin much earlier than their use in cryptography but have since
become the starting point of many efficient algorithms with sub-exponential complexity.

Lastly, Section 1.3 provides a general description of the index calculus algorithms we will concern
ourselves with in this thesis: the Function Field Sieve (FFS), the Number Field Sieve (NFS) and its
numerous variants. These algorithms are among the fastest known algorithms to solve the discrete
logarithm problem in finite fields and led to quite a few record computations in the past decades.

This chapter restricts itself to the classical setup thus we will not adventure ourselves in the
quantum world despite Shor’s polynomial time quantum algorithm. Moreover, we do not consider the
Area-Time (AT) complexity model [BL14].

Contents

1.1 Generic algorithms for the discrete logarithm problem . . . . . . . . . 14
1.1.1 Pohlig-Hellman’s reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.2 Baby-step Giant-step algorithm . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.3 Pollard algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Index Calculus methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Index calculus algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Small, medium and large characteristics . . . . . . . . . . . . . . . . . . . 20

1.3 The general setting of FFS, NFS and its variants . . . . . . . . . . . . 23
1.3.1 Overview of the algorithms: a general presentation . . . . . . . . . . . . . 24
1.3.2 Description of the variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13



1.1 Generic algorithms for the discrete logarithm problem
In this section, we present algorithms that solve the discrete logarithm problem in generic groups.

Following the work of Babai and Szemeredi [BS84] and Nechaev [Nec94], Shoup formally introduced
in 1997 [Sho97] the generic group model. The latter provides a rigorous definition of a generic algorithm,
i.e., an algorithm that does not exploit any particular structure of the group considered. More precisely,
it relies on the assumption that group operations are done by means of an oracle and elements of the
group are encoded as bitstrings.

Note that this model is far from a realistic representation of a group that could be used in cryptog-
raphy. Indeed, the encoding of group elements is generally distinguishable from random bitstrings (for
example, the identity element of a multiplicative group is usually denoted 1 or (0, 1, 0) for elliptic curves
etc). Thus one should simply view the generic group model as a mean to ensure that the group considered
in the discrete logarithm problem does not have any properties that could be used to solve the problem in
a more efficient way. We refer to [KM07] for a discussion of Shoup’s model and an explanation of the differ-
ences between the generic group model and the more well-known (in cryptography) random oracle model.

For the remaining of the section, let G be a finite cyclic multiplicative Abelian group with generator
g and order n. We denote t ∈ G the target element whose discrete logarithm x defined as x = logg t we
are looking for.

1.1.1 Pohlig-Hellman’s reduction
In 1978, Pohlig and Hellman [PH78] introduced a method that reduces the problem of solving DLP in
the entire group to solving it in smaller instances. The main idea of their algorithm is to reduce the
computation within the group G of order n to subgroups of prime order. Of course, this implies that n
is composite and that its factorization is known.

Let n decompose into n =
∏k
i=1 p

fi
i for distinct primes pi and integers fi > 0. Then there exists

a unique subgroup Gi ⊂ G of order ni = n/pfii for all i = 1, 2, · · · , k. Let gi = gni and thus gp
fi
i
i =

(gni)p
fi
i = gn = 1. The order of gi is then exactly pfii by Lagrange’s theorem and gi is a generator of Gi.

For each factor pfii , we consider the target ti = tni ∈ Gi and one can solve the discrete logarithm
problem in the corresponding subgroup Gi by finding

xi = loggi ti (mod pfii ).

Because x ≡ xi (mod pfii ) for all i = 1, 2, · · · , k from the definitions given above, after having found all
the xi, the Chinese remainder theorem (CRT) can be used to recover the solution x. This reduction to
subgroups is illustrated in Figure 1.1.

t = gx (mod n) with n = pf11 · · · p
fk
k

x1 ≡ x (mod pf11 ) . . . xi ≡ x (mod pfii ) . . . xk ≡ x (mod pfkk )

x (mod n) with CRT

Figure 1.1: Pohlig-Hellman decomposition in subgroups.

It then remains to focus on the discrete logarithm in each of the subgroups.

14



Question 6. How does one compute xi = loggi ti in each of the subgroups Gi?

The idea is again to reduce the problem further down to prime order subgroups. Let us consider one
of the subgroups Gi of order p

fi
i . The goal is to find xi = loggi ti, where ti = gxii ∈ Gi. We remove the

subscript i for ease of reading. We know the element x is smaller than the order of the subgroup, that
is pf , and hence can be re-written as x ≡ x0 + x1p + · · · + xf−1p

f−1 (mod pf ) with xi ∈ [0, p) for all
i = 1, 2, · · · , f − 1. One can then note that the equation t = gx raised to the power pf−1 becomes

tp
f−1

= gxp
f−1

= gx0p
f−1

,

the second equality coming from the expression of x (mod pf ). This intrinsically means that x0 =

log
gp
f−1 tp

f−1

, i.e., the coefficient x0 is the discrete logarithm of tp
f−1

in the subgroup generated by gp
f−1

,
which is of prime order p.

More generally, all the xi can be seen as discrete logarithms in prime subgroups. Indeed, the co-
efficients x1, x2, · · · , xf−1 can be found in a similar way by induction. Assume we have found all the
coefficients up to xk and we are looking to determine xk+1. In a similar fashion as before, we have

(
tg−

∑k
i=0 xip

i
)pf−k−2

= gxk+1p
k+1

from which we obtain xk+1 as the discrete logarithm of the left-hand-side of the equation in the same
subgroup generated by gp

f−1

of order p.
Pohlig-Hellman’s algorithm thus reduces the problem of computing a discrete logarithm in a group of

order n to computing discrete logarithms in prime order subgroups. The complexity of Pohlig-Hellman’s
reduction is O

(∑
i fi(log n+

√
pi)
)
. It narrows down to the sum of the costs of computing discrete loga-

rithms in all the subgroups. Computing the discrete logarithm in the prime order subgroups can be done
with algorithms using a square-root complexity as we will now explain. Note that the Pohlig-Hellman
reduction assumes that the order n of the group is composite. This is not always the case. If the order
of the group G is not composite, the complexity becomes O(

√
n). On the other hand, if n is compos-

ite, the complexity is bounded by the square root of the size of the largest pi in the prime factorization of n.

We now present two generic algorithms with no assumption on the compositeness of n and hence
ignoring Pohlig-Hellman’s reduction.

1.1.2 Baby-step Giant-step algorithm
The Baby-step Giant-step algorithm due to Shanks [Sha71] is a simple deterministic algorithm based on
a time-memory tradeoff as we will now explain.

Let m = d
√
ne. Then there exists integers 0 ≤ a, b < m such that the exponent x can be written as

x = a+ bm. The target element can thus be re-written as t = gx = ga+bm, which is equivalent to gbm =
tg−a. The algorithm starts by pre-computing a (large) list of “baby steps ”: L = {(a, tg−a) : 0 ≤ a < m}.
It is important here to note that this list not only must be stored in memory, but also in an adequate
way as to efficiently be able to determine whether an element is in it or not. To do so, one usually uses
hash tables.

The algorithm proceeds by computing larger steps known as “giant steps” calculating gbm for b values
in [0,m). Each time a giant step is computed, the algorithm compares with values from the baby steps
and checks in the list L if there exists a pair (a, tg−a) such that tg−a = gbm. If this is the case, the
algorithm found a value x = a+ bm such that t = gx. This algorithm is illustrated in Figure 1.2.

The complexity of the algorithm depends on the cost of computing the baby steps and the giant
steps. The baby step list L contains m elements and thus requires m group operations. The algorithm
computes at most m giant steps and thus the algorithm performs at most 2m group operations. The
time complexity is then O(d

√
ne). Note that this algorithm also has a space complexity of O(d

√
ne) due

to the necessity of storing the elements of L. Improvements on the number of groups operations can be
found in [GWZ17, BL13].

15



tg0

tg−1

tg−2

tg−3 g0

gm

g2m = tg−4

Figure 1.2: Example of baby steps (grey) and giant steps (blue). A collision is found for g2m = tg−4,
thus x = 2m+ 4.

1.1.3 Pollard algorithms
A major issue with the Baby-step Giant-step algorithm is the space requirement. In 1978, Pollard [Pol78]
suggested a randomized algorithm known as the Pollard rho algorithm which requires the same number
of group operations as Baby-step Giant-step but with the advantage of a O(1) space requirement. The
idea is quite similar to Baby-step Giant-step and relies on the possibility of a collision happening between
exponents of elements of the group.

Let ai, bi ∈ [0, n) be integer values for all indices i = 0, 1, · · · , n− 1 that characterize elements of G of
the form taigbi . The algorithm uses a random walk to detect a collision, meaning two indices, say j and k,
such that tajgbj = takgbk . More precisely, let f : G → G be a function used to define the random walk:
tai+1gbi+1 = f(taigbi). We refer to [Tes00] for details on constructions of the function f . If we assume
that the values taigbi behave as uniformly distributed random elements in G, the birthday paradox will
ensure a collision happens after approximately

√
n steps. The random walk is illustrated in Figure 1.3.

taj+1gbj+1

taj+2gbj+2

· · ·

tak−1gbk−1

tajgbj = takgbk

· · ·

ta1gb1

ta0gb0

Figure 1.3: Random walk in Pollard rho algorithm.

Once a collision has occured, the discrete logarithm can be recovered as x = (bj − bk)/(ak − aj)
(mod n), where one must have aj 6= ak otherwise the algorithm fails. Pollard rho’s algorithm is proba-
bilistic whereas the Baby-step Giant-step algorithm is deterministic.

16



The complexity is given by the number of steps in the random walk, thus is O(
√
n). We also mentioned

the O(1) space requirement as the major practical advantage over the previous algorithm. The latter
comes from the use of Floyds’ cycle-finding algorithm (also known as the Tortoise and the Hare algorithm)
which compares values taigai with ta2iga2i and thus only requires to store two values at any given time.

Solving DLP in a small interval. Pollard also proposed a variant known as the Pollard kangaroo
algorithm [Pol78] used when the discrete logarithm is known to lie in a small interval. The complexity
remains the same as Pollard Rho’s but the variant is computationally faster. This variant can be used for
example in the case where some bits of the discrete logarithm are known thus reducing the search space.
We will discuss and illustrate the use of Pollard’s kangaroo algorithm in the context of key recovery with
partial information in Chapter 6.

Both Pollard’s algorithms allow to use less memory which is a significant advantage for practical
computations. Another major improvement concerns the scalability of these algorithms. Van Oorschot
and Wiener in [OW99] showed how to parallelize Pollard’s algorithms using the method of distinguished
points.

We presented two generic algorithms that solve DLP in a group G with complexity O(
√
|G|). We

have also seen that this complexity can be further reduced if the order of the group is composite and
becomes O(

√
p) where p is the size of the largest prime factor of n using Pohlig-Hellman’s reduction. It

is natural to wonder whether a better algorithm exists for the generic group model.

Question 7. Can one find an algorithm for generic groups that has complexity lower than O(
√
p)?

The answer is no. Shoup used his generic group model to prove that the discrete logarithm problem
in a generic group of order p runs in Ω(

√
p) group operations.

1.2 Index Calculus methods
The square root complexity of the generic algorithms presented above can be reduced if the group con-
sidered has a particular structure that can be exploited. In particular, it was noted in [MW68, Mil75]
that the specific structure of multiplicative groups of finite fields could help in the design of more efficient
algorithms to solve DLP. This is the case of index calculus algorithms.

The index calculus method is an alternative to generic group algorithms first investigated in the work
of Kraitchik [Kra22] in the 1920s. This family of algorithms has led to a long succession of efficient proven
or heuristic algorithms often used for cryptanalysis, the most well-known being the Number Field Sieve.

1.2.1 Index calculus algorithms
In the context of finite field DLP computations, an index calculus algorithm takes as input the multi-
plicative group of a finite field F∗pn and a target element t ∈ F∗pn . It then outputs the discrete logarithm
of t in base g, the generator of the group, in sub-exponential time.

Any index calculus algorithm follows three main steps: a relation collection step, a linear algebra step
and finally an individual logarithm step.

Collecting relations. This first step consists in collecting multiplicative relations between elements
of F∗pn . These multiplicative relations are of the form∏

f∈F∗
pn

fef = gm

where ef and m are integer values. The goal is then to obtain the logarithms of these elements. To do
so, the multiplicative relations given above are transformed into additive linear relations∑

f∈F∗
pn

ef logg(f) ≡ m (mod pn − 1).

17



These relations form a system of equations where the unknowns are the logg f . The relation collection
step stops when enough relations are collected. The algorithm requires as many relations as unknowns
in order to uniquely solve the system.

Question 8. Concretely how do we collect relations?

Relation collection has significantly evolved since the first index calculus algorithms in the 1970s. The
first algorithm proposed by Adleman [Adl79] in prime fields of order p computed ga (mod p) until an
integer a was found such that ga factored into a product of small primes. This simple method led to a
first sub-exponential complexity for the discrete logarithm in prime fields.

However, in more recent algorithms, relations are computed more efficiently by using a commutative
diagram. The idea is then to represent the equality characterizing a relation by taking two different paths
in the diagram which lead to the same result. This is illustrated in Figure 1.4. At the top of the diagram,
a ring R is adequately chosen depending on the context.

R

I1 I2

F∗pn

ψ1

ψ2

ϕ1

ϕ2

Figure 1.4: Commutative diagram to collect relations.

The maps ψ1, ψ2, ϕ1, ϕ2 are morphisms and because the diagram is commutative, for x ∈ R we have

ϕ1(ψ1(x)) = ϕ2(ψ2(x)) ∈ F∗pn .

A relation is found if a given x ∈ R produces two equal products in F∗pn and the quantities ψ1(x) and ψ2(x)
decompose into small enough factors in the intermediate rings I1, I2. Let F1 and F2 be two small subsets
of “small” elements of I1, I2. Then, we have a relation if

ψ1(x) =
∏
f∈F1

fef and ψ2(x) =
∏
f ′∈F2

f ′ef′ .

Finally, the relation is expressed as

ϕ1(ψ1(x)) =
∏
f∈F1

ϕ1(fef ) =
∏
f ′∈F2

ϕ2(f ′ef′ ) = ϕ2(ψ2(x)) ∈ F∗pn ,

from which we have ∑
f∈F1

ef log(ϕ1(f)) ≡
∑
f ′∈F2

ef ′ log(ϕ2(f ′)) (mod pn − 1).

Definition 4 (Factor basis). We will define the factor basis as F = F1 ∪ F2.

Remark 2. The exact definition of the elements of a factor basis depends on the context and in particular
on the definitions of I1 and I2. We will further discuss this when detailing the algorithms. Moreover, the
term factor basis often refers directly to the images by ϕ1, ϕ2 of the elements of F .

18



Linear algebra. Once enough relations are collected, they form a linear system of equations where the
unknowns are the discrete logarithms of the images by ϕ1, ϕ2 of factor basis elements. Solving the system
gives an element of the kernel of the matrix of relations and the discrete logarithms of the elements of
the factor basis are found up to a constant, meaning there exists c > 0 such that c logg ϕi(f) is a solution
for f ∈ Fi, i = 1, 2. This constant c can easily be found if g is in the factor basis. Indeed, if g ∈ Fi, one
solution will be c logg ϕi(g) = x and since logg ϕi(g) = 1, we explicitly recover the constant c. By solving
this system, one then gets all the logarithms of the elements of the factor basis.

Question 9. How do we efficiently solve this system?

It is important to note that the system is sparse, meaning that many coefficients in the matrix are
equal to zero. Indeed, when considering a row of the matrix, i.e., a relation

∑
f∈F1

ef log(ϕ1(f)) =∑
f ′∈F2

ef ′ log(ϕ2(f ′)) (mod pn − 1), most of the coefficients ef , ef ′ are equal to zero as many elements
of the factor basis will not necessarily appear in the factorization of ψ1(x) and ψ2(x).

The sparsity of the matrix allows to use efficient algorithms to solve the system with quadratic
complexity instead of cubic, such as block Wiedemann algorithm [Cop94].

Individual logarithm phase. We now have the discrete logarithms of all the elements of the factor
basis. However, the desired output is the discrete logarithm of an arbitrary (larger) element t of the
group F∗pn . The general idea is then to decompose t into a product of elements of the factor basis.
Indeed, if t =

∏
f∈F f

αf and we are looking for x such that t = gx, then we have

x ≡
∑
f∈F

αf logg(f) (mod pn − 1).

Question 10. What is the complexity of index calculus algorithms?

The main idea of index calculus algorithms is to decompose elements of the group into a product
of bounded elements. The complexity of the algorithm thus relies on the probability of elements of the
group to easily decompose into smaller parts. This brings forth the following definition.

Definition 5 (B-smoothness). An integer (resp. a polynomial) is said to be B-smooth if it decom-
poses into prime factors smaller than B (resp. into irreducible factors of degree smaller than B.)

Let ψ(x, y) denote the number of positive integers smaller than x which are y-smooth. What interests
us more than evaluating the number ψ(x, y) is the probability of a random number smaller than x to be
y-smooth. This probability is given by the quantity ψ(x, y)/x.

Mathematical results on the probability of smoothness of random integers were given first by Dick-
man [Dic30] and then by Canfield, Erdős and Pomerance in [CEP83]. Dickman provided a first asymptotic
formula for ψ(x, y) by showing that for any fixed u > 0

lim
x→∞

ψ(x, x1/u)/x = ρ(u).

The function ρ(u) is commonly known as Dickman’s rho function and is defined as the unique solution
to the differential equation

uρ′(u) + ρ(u− 1) = 0,

for u > 1 and ρ(u) = 1 for 0 ≤ u ≤ 1.
The following theorem states an even stronger result.

Theorem 1 (Canfield, Erdős, Pomerance). If ε > 0 and 3 ≤ u ≤ (1−ε) log x/ log log x, then ψ(x, x1/u) =
xu−u+o(u).

This smoothness result for random integers can be adapted to polynomials over finite fields [PGF98].

19



Theorem 2 (Panario, Gourdon, Flajolet). The number of y-smooth monic polynomials of degree x
over Fpn is given by

Ψpn(x, y) = (pn)xρ

(
x

y

)(
1 +O

(
log x

y

))
,

where ρ is the Dickman’s rho function.

The probability of smoothness for both integers and polynomials can be summarized in the following
corollary.

Corollary 1. The probability that a random integer (resp. random polynomial) smaller than x (resp. of
degree smaller than x) is y-smooth is given by u−u+o(1) where u = log x/ log y (resp. u = x/y).

Part of the complexity analyses of index calculus algorithms rely on these probabilities. This intro-
duces however a major heuristic: we assume in these analyses that the elements created in the relations
behave as random integers (or polynomials). The only fully proven algorithms were given by Pomerance
in 1987 [Pom87] and more recently by Kleinjung and Wesolowski [KW19].

Let us now go back to the complexity analysis of index calculus methods. The algorithm being divided
into three steps, the total cost of the algorithm is the sum of the costs of these three steps which we now
explain.

Relation collection. The cost of this step mainly corresponds to the cost of finding enough relations,
i.e., finding |F| relations. Let PB be the probability of finding a B-smooth element. Finding enough
relations has a cost of |F|/PB operations. One should also take into account the cost of testing for
B-smoothness, but we will see in more detailed analyses that it is negligible with respect to other costs.

Linear algebra. The cost of linear algebra is the cost of solving the linear system of equations formed
by the relations. As we mentioned before, there exist quadratic time algorithms that solve sparse systems
and thus the cost of this step is |F|2 operations.

Individual logarithm step. Finally, the cost of the individual logarithm step narrows down to the
cost of splitting the target element t into B-smooth factors and thus corresponds to 1/PB operations. A
more rigorous explanation leading to a more accurate cost will be given in Chapters 4 and 5 but the cost
remains negligible compared to the two other costs.

In order to facilitate the expression of the complexity of these steps and the total complexity of the
algorithm, the smoothness results and the quantities involved in the complexity analyses are usually
restated using a notation known as the Lpn -notation that arises from the smoothness probabilities. This
notation allows in particular to visualize these algorithms as sub-exponential time algorithms, meaning
not as fast as polynomial time algorithms but better than exponential time ones. The terminology is
explained in the following section.

1.2.2 Small, medium and large characteristics
The index calculus method gave rise to many algorithms that solve DLP over finite fields Fpn and their
complexities vary depending on the relation between the characteristic p and the extension degree n.
Three families of finite fields emerged in which different variants of the index calculus method perform
best.

The Lpn -notation is used to both define these families of finite fields and express the complexities of
the algorithms. The latter is defined as

Lpn(α, c) = exp((c+ o(1))(log pn)α(log log pn)1−α),

for 0 6 α 6 1, some constant c > 0 and o(1)→ 0 when pn →∞. The constant c is ignored if the context
does not require it specifically.

Let us first consider the Lpn-notation as a means to characterize finite fields. The characteristic p of
the finite field is expressed using the Lpn -notation. Now, with p = Lpn(α, c), we talk of large characteristic

20



finite fields if α > 2/3, medium characteristic finite fields if α ∈ (1/3, 2/3) and small characteristic finite
fields if α < 1/3. These families are illustrated in Figure 1.5.

One can see that the definition matches the intuition. A binary field F2n is a finite field said of small
characteristic. Indeed, we can write p = 2 = L2n(0, c) = exp(c+o(1))(log log 2n) with c = log 2/ log log 2n.
On the other hand, a prime field Fp is said to be of large characteristic as one can write p = Lp(1, c) =
exp(c+ o(1))(log p) with c = 1. Note however that the definition is considered asymptotically and is thus
harder to conceptualize for fixed parameters.

0 1
3

2
3 1

α

Small char Medium char Large char

F21024 Fp406 Fp12170 Fp1024

First boundary Second boundary

Figure 1.5: Three families of finite fields with examples. For the examples, we use the approximation
α ≈ log log p

log log pn . The notation pa means a prime p of bitsize a.

These families are separated by two boundary cases: p = Lpn(1/3, c) and p = Lpn(2/3, c).

Question 11. What does it mean to be at a boundary case?

Let us consider the first boundary case as it will be our study-case in Chapter 3. This boundary
case corresponds to the equation p = Lpn(1/3, c) which implies log p = log(pn)1/3 log log(pn)2/3, ignoring
the constant. As we are mainly trying to convey an intuition, let us ignore the log log term and have
(log p)3 ≈ log(pn). Thus, the first boundary case represents the family of finite fields such that n ≈ (log p)2.

This Lpn -notation is not only used to characterize families of finite fields, but it is also used to express
the complexities of the algorithms that solve DLP in finite fields. The notion of sub-exponential time
complexity can be seen with the definition. Indeed, when α→ 0, we have Lpn(α, c) ≈ exp(c log log pn) ≈
(log pn)c which implies a polynomial time complexity in the size of the input, the finite field. On the other
hand, when α → 1, we get Lpn(α, c) ≈ pcn which is exponential time. When 0 < α < 1, the Lpn(α, c)
complexity is thus sub-exponential.

Question 12. Which algorithms are more efficient in each family of finite fields?

The most efficient algorithms that solve DLP in finite fields all come from the index calculus method
presented above. Among the most well-known algorithms we have the Number Field Sieve and its
variants, the Function Field Sieve and the more recent family of Quasi-Polynomial time algorithms (QP).
We briefly go over the history of these algorithms to answer Question 12 and refer to Section 1.3 for more
details.

Small characteristic. In the case of small characteristic, Coppersmith [Cop84] gave a first Lpn(1/3)
algorithm in 1984. Introduced in 1994 by Adleman, the Function Field Sieve [Adl94] also tackles the
DLP in finite fields of small characteristic. The algorithm relies on the arithmetic of function fields.
In 2006, Joux and Lercier [JL06] proposed a description of FFS which does not require the theory of
function fields, and Joux further introduced in [Jou13] a method, known as pinpointing, which lowers the
complexity of the algorithm.

In 2013, after a first breakthrough complexity of Lpn(1/4 + o(1)) by Joux [Jou14], a heuristic Quasi-
Polynomial time algorithm was designed [BGJT14] by Barbulescu, Gaudry, Joux and Thomé. Variants
were explored in the following years [GKZ14, GKZ18, JP14a, JP19] with two different goals: making the
algorithm more practical, and making it more amenable to a proven complexity. We mention two key
ingredients. First, the so-called zig-zag descent allows to reduce the problem to proving that it is possible
to rewrite the discrete logarithm of any degree-2 element in terms of the discrete logarithms of linear
factors, at least if a nice representation of the finite field can be found. The second key idea is to replace

21



a classical polynomial representation of the target finite field by a representation coming from torsion
points of elliptic curves. This led to a proven complexity in 2019 by Kleinjung and Wesolowski [KW19].
To sum it up, the Quasi-Polynomial algorithms outperform all previous algorithms both theoretically
and in practice in the small characteristic case.

Medium characteristic. For finite fields of medium characteristics, NFS and its variants remain
as of today the most competitive algorithms to solve DLP. Originally introduced for factoring, the NFS
algorithm was first adapted by Gordon in 1993 to the discrete logarithm context for prime fields [Gor93]. A
few years later, Schirokauer [Sch00] extended it to finite fields with extension degrees n > 1. In [JLSV06],
Joux, Lercier, Smart and Vercauteren finally showed that the NFS algorithm can be used for all finite
fields. Since then, many variants of NFS have appeared, gradually improving on the complexity of NFS.
The extension to the Multiple Number Field Sieve (MNFS) was originally invented for factoring [Cop93]
and was then adapted to the discrete logarithm setup [Mat03, BP14]. The Tower Number Field Sieve
(TNFS) [BGK15] was also introduced in 2015.

When n is composite, this variant has been extended to exTNFS in [KB16, KJ17]. The use of primes
of a special form gives rise to another variant called the Special Number Field Sieve (SNFS) [JP14b].
Most of these variants can be combined with each other, giving rise to MexTNFS and S(ex)TNFS. The
complexities of all these algorithms are summarized in Table 1.1.

Large characteristic. The variants used in medium characteristic can also be used in large char-
acteristic, the best complexity being achieved using special primes. The complexities are reported in
Table 1.1.

Specificity Algorithm medium characteristic 2nd boundary large characteristic
None NFS 96 48 64

MNFS 89.45 45.00 61.93
TNFS – – 64
MTNFS – – 61.93

Composite n exTNFS 48 48 64
MexTNFS 45.00 45.00 61.93

Special p SNFS 64
(
λ+1
λ

)
? 32

STNFS – – 32
Composite n and special p SexTNFS 32 ? 32

Table 1.1: Best complexities of NFS and its variants in medium and large characteristics. The complexities
are all given as Lpn(1/3, (c/9)1/3) and we report the value c. We write − when a variant for specific sizes
of finite fields leads to a complexity greater than Lpn(1/3). For the 2nd boundary case, we report the
best achieved constant as the complexity is non-monotonic in this case. For ?, these values also depend
on another parameter λ and thus we refer to [JP14b, KB16] for details.

Figure 1.6 summarizes the performance of these algorithms in relation to the three families of finite
fields defined above.

Question 13. What happens at the two boundary cases?

One can see from Figure 1.6 that the boudary case p = Lpn(2/3) separates two families where essentially
the same algorithms perform best: the Number Field Sieve and its variants. The precise analysis of the
complexity of these algorithms at this boundary case has been studied as a particular case in most papers
that study these complexities in either the medium or the large case.

However, the boundary case p = Lpn(1/3) looks more suspicious as algorithms using different tech-
niques overlap in this area. Quasi-Polynomial time algorithms and FFS come from the small characteristic
family whereas NFS and its variants start performing well in medium characteristic. A precise analysis
of the complexities of the aforementioned algorithms at this boundary case is the focus of Chapter 3.

We now describe the general setup of FFS and NFS as well as its variants. We do not detail the
family of Quasi-Polynomial time algorithms as they appear very little in this thesis.

22



log log p

log n

Small char

Medium char

Large char

p = Lpn(2/3)

p = Lpn(1/3)

Quasi-Poly

NFS and variants
(with larger complexities)

NFS and variants
(with smaller complexities)

Fi
rs
t
bo
un
da
ry

Sec
ond

bou
nda

ry

Figure 1.6: Families of finite fields with best performing algorithms.

1.3 The general setting of FFS, NFS and its variants
In this section, we introduce a general description of the Number Field Sieve algorithm, its variants and
the similar Function Field Sieve algorithm. We focus on the overall structure of the algorithms following
the steps introduced for index calculus methods.

We will provide substantially more technical details for the description of one variant, the Tower
Number Field Sieve, in Chapter 4, as we provide a first implementation of it as well as a first record
computation.

Before introducing this general framework, let us look at the definitions of the mathematical objects
that give their names to these algorithms.

Definition 6 (Number field). A number field is a finite degree extension of Q. It is defined as
K = Q[x]/(f) where f is an irreducible polynomial in Q[x].

The degree of the number field K is the degree n of the polynomial f . The elements of K are called
algebraic numbers.

When replacing “number” by “function”, we have the following similar definition.

Definition 7 (Function field). Let p be a prime number. A function field is a finite extension of the
rational function field Fp(ι). Let f be an irreducible polynomial in Fp(ι)[x]. Then, the function field
defined by f is the field Fp(ι)[x]/(f).

Elements of a function field are called algebraic functions.

The main objects we will concern ourselves with in number and function fields are ideals and in
particular their norms. We recall the definition of the norm of an ideal.

23



Definition 8 (Norm of ideal). Let K be an algebraic number or function field and OK its ring of
integers. The norm of a non-zero ideal I is NK(I) = |OK/I|.

Computing the norms of ideals will play a central role in complexity analyses of index calculus algo-
rithms. In the case of number fields, we will exploit the relation between the norm and the resultant. If
K is a number field associated to an irreducible polynomial f ∈ Z[x], meaning K = Q[x]/(f) and θ is a
root of f , then for φ ∈ Z[x], the norm of φ(θ) ∈ K satisfies

N(φ(θ)) = ±fdeg φ
n Res(φ, f),

where fn is the leading coefficient of f .
In the case of function fields, the norms are computed with a bivariate resultant and correspond to

polynomials.

Interestingly enough, the same arithmetic theory applies to finite extensions of Fp(ι) and finite exten-
sions of Q. This allows NFS and FFS to share many similarities and thus to be presented in a combined
setup.

1.3.1 Overview of the algorithms: a general presentation
Consider a ring R that is either Z in the most basic NFS, a number ring Z[ι]/(h(ι)) in the case of Tower
NFS, or Fp[ι] in the case of FFS. The algorithm starts by selecting V distinct irreducible polynomials fi(x)
in R[x] in such a way that there exist maps from R[x]/(fi(x)) to the target finite field Fpn that make the
diagram commutative. This leads to the construction given in Figure 1.7 which should remind the reader
of Figure 1.4. In order to have these maps, the polynomials are selected such as to share a common
irreducible factor of degree n.

Question 14. Why do we need a common irreducible factor of degree n?

Let us consider the simple case where R = Z. Let I(x) be an irreducible factor of degree n in Fp[x] shared
by all the polynomials fi. The target finite field can be expressed as Fpn ∼= Fp[x]/(I(x)) and let m be
a root of I (mod p). Then I(m) = 0 in Fpn and thus fi(m) = 0 (mod p). Hence all the polynomials fi
share a common root m in Fpn and the maps from Q[x]/(fi(x)) to the target finite field Fpn simply
correspond to an evaluation in m. Using the same notations as in Figure 1.4, we have the maps

ψi : Z[x] → Q[x]/(fi(x))
x 7→ θi

where θi is a root of fi and

ϕi : Q[x]/(fi(x)) → Fpn
θi 7→ m

A polynomial φ(x) ∈ Z[x] can be written as φ(x) = fi(x)Qi(x) + Pi(x) with Qi, Pi ∈ Z[x]. It is first
mapped to φ(θi) = fi(θi)Qi(θi)+Pi(θi) = Pi(θi) in Q[x]/(fi(x)) and then to fi(m)Qi(m)+Pi(m) = Pi(m)
in Fpn since fi(m) = 0 (mod p). A relation is thus an equation in Fpn of the form Pi(m) = Pj(m) (mod p)
for i 6= j.

Based on this construction, the discrete logarithm computation follows the same steps as any index
calculus algorithm:

• Relation collection: we collect relations built from polynomials φ ∈ R[x] of degree t − 1, and
with bounded coefficients. If R is a ring of integers, we bound their norms, and if it is a ring of
polynomials, we bound their degrees. The intermediate fields considered are then either number
fields or function fields.

For number fields: Because there exists no unique factorization of elements of a number field, the
elements of the factor basis are chosen to be prime ideals in the ring of integers of the number fields.

24



R [X]

R[x]/(f1(x)) R[x]/(f2(x)) . . . R[x]/(fi(x)) . . . R[x]/(fV−1(x)) R[x]/(fV (x))

Fpn

Figure 1.7: General diagram for FFS, NFS and variants.

Indeed, we know that every nonzero ideal can be written uniquely as a product of prime ideals.
Moreover, because testing the B-smoothness of the norms of the prime ideals is computationally
easier than directly testing the smoothness of the ideals, we compute two norms Ni and Nj of φ
mapped to R[x]/(fi(x)) and R[x]/(fj(x)). A relation is then obtained when the latter are both
B-smooth, for a smoothness bound B fixed during the complexity analysis.

For function fields: In the case of function fields, the elements of the factor basis also correspond to
prime ideals. Testing the B-smoothness is done by computing the norm of these ideals and factoring
the resulting univariate polynomial for which we know there exists a unique decomposition into a
product of monic irreducible polynomials.

Each relation is therefore given by a polynomial φ for which the diagram gives a linear equation
between the (virtual) logarithms of ideals of small norms coming from two distinct number or func-
tion fields. We omit details about the notion of virtual logarithms at this stage of the presentation
and refer readers to [Sch05] and Chapter 4. For FFS, similar technicalities can be dealt with.

• Linear algebra: The relations obtained in the previous step form a system of linear equations where
the unknowns are logarithms of ideals. This system is sparse with at most O(log pn) non-zero entries
per row, and can be solved in quasi-quadratic time using the block Wiedemann algorithm [Cop94].

• Individual logarithms: The previous step outputs the logarithms of ideals with norms smaller than
the smoothness bound B used during sieving. The notion of logarithm of an ideal is of course not
well-defined and results in the introduction of virtual logarithms mentioned above and detailed in
Chapter 4. The goal of the algorithm is to compute the discrete logarithm of an arbitrary element
in the target field. The commonly used approach for this step proceeds in two sub-steps. First, the
target is subject to a smoothing procedure. The latter is randomized until after being lifted in one
of the fields it becomes smooth (for a smoothness bound much larger than the bound B). Second,
a special-q descent method is applied to each factor obtained after smoothing which is larger than
the bound B. This allows to recursively rewrite their logarithms in terms of logarithms of smaller
ideals. This is done until all the factors are below B, so that their logarithms are known. This
forms what is called a descent tree where the root is an ideal coming from the smoothing step, and
the nodes are ideals that get smaller and smaller as they go deeper. The leaves are the ideals just
below B. We refer to [JLSV06, FGHT17] for details.

1.3.2 Description of the variants
Let us now describe the variants of NFS and see how they can be instantiated in our general setting.

Number Field Sieve. In this thesis, we call NFS, the simplest variant, where the ring R is Z, there
are only V = 2 number fields, and the polynomials f1 and f2 are constructed without using any specific
form for p or the possible compositeness of n.

Multiple Number Field Sieve. The variant MNFS uses V number fields, where V grows to infinity
with the size of the finite field. From two polynomials f1 and f2 constructed as in NFS, the V − 2 other
polynomials are built as linear combinations of f1 and f2: we set fi = αif1 + βif2, for i ≥ 3, where

25



the coefficients αi, βi are in O(
√
V ). These polynomials have degree max(deg(f1),deg(f2)) and their

coefficients are of size O(
√
V max(||f1||∞, ||f2||∞)).

There exist two variants of MNFS: an asymmetric one, coming from factoring [Cop93], where the
relations always involve the first number field, and a symmetric one [BP14], where a relation can involve
any two number fields. The asymmetric variant is more natural when one of the polynomials has smaller
degree or coefficients than the others. When all the polynomials have similar features, at first it could
seem that the symmetric case is more advantageous, since the number of possible relations grows as V 2

instead of V . However, the search time is also increased, since for each candidate φ, we always have to
test V norms for smoothness, while in the asymmetric setup when the first norm is not smooth we do
not test the others.

Question 15. What motivates the use of this variant of NFS?

A relation will always involve two number fields and since MNFS considers V of them, this variant is
intrinsically increasing the chances of finding smooth norms and thus speeding up the relation collection
step.

(Extended) Tower Number Field Sieve. The TNFS or exTNFS variants cover the cases where R =
Z[ι]/h(ι), where h is a monic irreducible polynomial. In the TNFS case, the degree of h is taken to be
exactly equal to n, while the exTNFS notation refers to the case where n = κη is composite and the
degree of h is η. Both TNFS and exTNFS can use either two number fields or V � 2 number fields. In
the latter case, the prefix letter M is added refering to the MNFS variant. Details about (M)(ex)TNFS
and their variants are given in [BGK15, KB16, KJ17, SS19]. A specific attention will be given to exTNFS
in Chapter 4 as we provide a first implementation of this algorithm and a first record computation with
it.

Remark 3. In the literature, the denomination TNFS is sometimes used to describe a more general
family of algorithms in which exTNFS is a special case. In this thesis, we will talk about TNFS when
the degree of h is strictly greater than 1. This covers cases where n is either prime or composite. The
variant exTNFS is only used when n is composite. However, the optimal complexities of exTNFS are
only achieved when the factors of n are correctly balanced.

Question 16. What motivates the use of this variant of NFS?

When n is composite, the complexity of a computation done in medium characteristic with exTNFS can
be viewed similarly as the complexity of a computation done with NFS at the boundary case between
medium and large characteristic, meaning with a smaller constant c in the Lpn-notation. This will be
further explained in Chapter 4.

Special Number Field Sieve. The SNFS variant [JP14b] applies when the characteristic p is the
evaluation of a polynomial of small degree with constant coefficients, which is a feature of several pairing
construction families. Thus, the algorithm differs from NFS in the choice of the polynomials f1 and f2.
To date, there is no known way to combine this efficiently with the multiple variant of NFS. However, it
can be applied in the (ex)TNFS setup, giving STNFS and SexTNFS.

Question 17. What motivates the use of this variant of NFS?

In this variant, the characteristic p is defined in a special way which leads to a sparse representation.
This sparsity allows to select polynomials f1, f2 of small degrees and such that the product of the size of
the coefficients is also very small. This will lead to smaller norms and thus a higher probability of finding
relations.

Function Field Sieve. The FFS algorithm can be viewed in our general setting by choosing the
polynomial ring R = Fp[ι]. The polynomials f1 and f2 are then bivariate, and therefore define plane

26



curves. The algebraic structures replacing number fields are then function fields of these curves. FFS
cannot be combined efficiently with a multiple variant. In fact, FFS itself is already quite similar to
a special variant; this explains this difficulty to combine it with the multiple variant, and to design an
even more special variant. The tower variant is relevant when n is composite, and it can be reduced to
a change of base field. We propose a new method to do so in Chapter 3.

In [JL06], Joux and Lercier proposed a slightly different setting. Although not faster than the clas-
sical FFS in small characteristic, it is much simpler, and furthermore, it gave rise to the pinpointing
technique [Jou13] which is highly relevant when the characteristic is not so small. We recall their variant
in Chapter 3 as we study its complexity at the boundary case p = Lpn(1/3). Several improvements to
FFS exist when the finite field is a Kummer extension. This is not addressed in this thesis.

Question 18. What differences exist between the Function Field Sieve and Number Field Sieve algo-
rithms?

The FFS and NFS algorithms are very similar as the arithmetic of number fields and function fields
are alike. However, noticeable differences are worth mentioning. These differences affect the overall
complexity of the algorithms and allows FFS to achieve a lower complexity than NFS for a certain range
of finite fields.

The first difference comes in the polynomial selection. As mentioned above, it is similar to SNFS even
though FFS can be applied to any finite field of small characteristic which leads to an Lpn(1/3, (c/9)1/3)
complexity with constant c = 32. Furthermore, Joux and Lercier introduced a method that appropriately
selects polynomials for FFS. This method allows to use the pinpointing technique which we explain in
Chapter 3, Section 3.2.2 as well as how it affects the complexity of FFS.

Other differences come from the computational cost of algorithms used in both contexts. One major
difference is the cost of testing for smoothness. In the NFS algorithm, the smoothness of elements is tested
using the Elliptic Curve Method (ECM) whose complexity is in LB(1/2, 1) where B is the smoothness
bound. In order to amortize its cost for practical computations, it is run on a small set of elements (see
Chapter 4 for more details).

On the other hand, testing for smoothness in FFS can be done in polynomial time. Indeed, there
exist randomized algorithms that factor univariate polynomials over finite fields in polynomial time
(for example the Cantor-Zassenhaus algorithm). There even exist deterministic algorithms (Shoup’s
algorithm) but only with polynomial time complexity in the average case (the polynomial time complexity
in the worst-case for deterministic algorithms is still an open question).

Another noticeable difference is the absence of Schirokauer maps in the context of FFS. As we have
not introduced Schirokauer maps yet, we refer to [Bar13, Section 6.6.3] for a detailed explanation as to
how Schirokauer maps are replaced in FFS by valuations at infinity.

Question 19. What record computations have been done recently?

Several of these algorithms have been implemented in order to perform record computations and estimate
which sizes of finite fields are too small for security purposes. Among those algorithms, we have the Num-
ber Field Sieve, the Function Field Sieve, the Quasi-Polynomial algorithms and older L(1/2)-algorithms.

Not many of these algorithms have an open source implementation. It is the case for the Number
Field Sieve algorithm implemented in CADO-NFS [cad]. The latter provides a complete implementation
of NFS in C/C++. Recently, code for the TNFS variant has been added to it, see Chapter 5. All other
implementations used for these records either partially use CADO-NFS for parts of the computation or
remain unfortunately publicly unavailable.

We describe the most recent record computations (since 2016) in the following Figure 1.8. We attempt
to classify these records using the three families of finite fields described by the Lpn -notation. Since the
latter is asymptotic, its translation for finite fields of fixed dimension is ambiguous and we will use the
approximation α ≈ log log p

log log pn . Let us illustrate this with two examples.

Example 1 (A record computation in medium characteristic). The recent record [MSST20] was done
using the Function Field Algorithms over a 1051-bit field with a 22-bit characteristic p. From the definition

27



of the Lpn notation, we know that log p ≈ (log pn)α. We thus approximate

α ≈ log(bitsize of p)
log(bitsize of pn)

≈ log 22

log 1051
≈ 0.44 ∈ (1/3, 2/3).

The finite field considered thus corresponds to a finite field that would be in the medium characteristic
family.

Example 2 (A record computation in large characteristic). Similarly, let us look at our own TNFS
record computation in Fp6 of size 521 bit with characteristic p of 87 bits. Then

α ≈ log(bitsize of p)
log(bitsize of pn)

≈ log 87

log 521
≈ 0.71 ∈ (2/3, 1).

The finite field considered thus corresponds to a finite field that would be in the large characteristic family,
however close to the second boundary.

0 1
3

2
3 1

α

Small char Medium char Large char

F230750 30750 QP 2019 [GKL+20]
F33054 4841 QP 2016 [ACMCC+18] Fp50 1051 FFS 2020 [MSST20]

Fp6 521 TNFS 2021 Chap 4
Fp6 423 NFS-HD 2020 [MR21]
Fp 795 NFS 2020 [BGG+20]
Fp6 422 NFS-HD 2016 [GGMT17]
Fp5 324 NFS-HD 2016 [GGM17]
Fp 1024 SNFS 2016 [FGHT17]
Fp3 593 NFS 2016 [Gré16]
Fp 768 NFS 2016 [KDL+17]
Fp3 508 NFS 2016 [GMT16]

Figure 1.8: Latest record computations (since 2016) for discrete logarithm computations in Fpn in each
family of finite fields. We give: finite field, size of pn, algorithm used, year/reference (if any).

A complete list of record computations is given in [Gré16].

Question 20. Which other variants of NFS have been implemented?

As we can see from Figure 1.8, the record computations done in large characteristics mostly use the
Number Field Sieve algorithm. However, the latter has many variants that asymptotically improve the
complexity. Among these variants, only TNFS was implemented and used for a record, see Chapters 4
and 5. Other variants such has MNFS have not been implemented yet. Many obstacles come along the
implementation of a multiple number field variant such as the choice of the number of number fields V , the
correct polynomials to select and the adaptation of the code to its specific context. The (non-asymptotic)
gain of MNFS for record computations is also not entirely clear. Therefore, MNFS still awaits its first
record which constitutes an interesting topic of research.

The special variant of NFS only differs in the choice of polynomials and thus record computations
have been done with this variant using the CADO-NFS software. Similarly NFS-HD refers to the NFS
algorithm where the dimension of the sieving space is greater than 2 and the latter was also implemented
in CADO-NFS (no longer maintained).

Question 21. What key and group sizes are recommended?

The US National Institute of Standards and Technology (NIST) and the French National Agency for
the Security of Information Systems (ANSSI) are two national institutes that provide standards for
cryptographic protocols. In particular, they give recommendations for key sizes and group sizes of all
cryptographic protocols that are commonly used. We summarize in Table 1.2 their recommendations for
protocols based on the hardness of the discrete logarithm problem.

28



Agency Date Size of group Size of key
NIST 2019-2030 2048 224

> 2030 3072 256
ANSSI 2021-2030 2048 200

> 2030 3072 200

Table 1.2: Recommendations from NIST and ANSSI for discrete logarithm key sizes and groups. All
sizes are given in bits.

One can note that these recommendations do not take into account specificities of the finite field
considered. Indeed, we have seen throughout this chapter that the hardness of solving the discrete
logarithm problem is very dependent on the characteristics of the group considered. More precisely for
finite fields, it depends on the relation between the characteristic p and the extension degree n, the
compositeness of n and special properties of p (more specifically, its sparsity).

Figure 1.8 illustrates these differences. Indeed, for finite fields of small characteristic, record compu-
tations were performed on finite fields whose size exceeds the recommended size (eg, 30750� 2048, even
3072). In large characteristic, the largest finite field for which a record computation has been performed
is of size 1024 bit, but the record was performed with SNFS which can be used when the characteristic p
is of a special form.

Hence, it is important to keep in mind that in order to guarantee a sufficient level of security, the
size of the finite field must be chosen in line with the specificities of p and n. In practice, fields of small
characteristic are avoided, and for practical reasons prime fields are often chosen.

Finally, key sizes correspond to the size of the subgroup in which we consider DLP and are usually
chosen to be twice the level of security wanted to avoid attacks coming from Pollard’s kangaroo algorithm
for example.

29



30



Chapter 2

Lattices and related hard
computational problems

In this chapter, we introduce some fundamental notions in the theory of lattices specific to their use for
cryptanalysis. We restrict the presentation of lattices to notions that are useful in this thesis.

In Section 2.1, we recall general definitions and results proper to lattices and related algorithmic
problems. We focus on two fundamental computationally hard lattice problems: the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). The hardness of SVP in particular is at the
center of the security estimates of lattice-based cryptosystems.

We then cover algorithms that give both exact and approximate solutions to these problems in Sec-
tion 2.2. More precisely, we first focus on enumeration algorithms which are the oldest examples of
algorithms that provide exact solutions to SVP and CVP. We focus on this family of algorithms as lattice
enumeration will also be used in this thesis in the context of discrete logarithm computations to collect
algebraic relations, see Chapter 4.

Finally, we look at the main lattice basis reduction algorithms which provide approximate solutions
to SVP and CVP in Section 2.3. These reduction algorithms such as LLL and BKZ are extensively used
for cryptanalysis and also became important tools in algebraic number theory. In this thesis, we will use
them specifically in the context of key recovery, see Part III.
Contents

2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.1 Euclidean lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Algorithmic problems related to Euclidean lattices . . . . . . . . . . . . . 34
2.1.3 Ideal and module lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.4 Random lattices and random bases . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Enumeration to solve exact SVP and CVP . . . . . . . . . . . . . . . . 38
2.2.1 General framework of enumeration algorithms . . . . . . . . . . . . . . . . 39
2.2.2 Constructing an enumeration tree . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 The complexity of enumeration algorithms . . . . . . . . . . . . . . . . . . 42

2.3 Reduction algorithms for Euclidean lattices . . . . . . . . . . . . . . . . 43
2.3.1 The LLL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Analyzing LLL via a directed graph . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 The BKZ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Lattices
2.1.1 Euclidean lattices
We start by recalling a few notations and definitions. Vectors are written in bold. The operators || · || and
〈·, ·〉 denote the Euclidean norm and the inner product in the Euclidean space Rn. Definitions and results

31



in this chapter can be adapted to any norm but we focus on the `2 norm as it is the most commonly used
in cryptography.

Definition 9 (Lattice). Let B = {b1, b2, . . . , bk} ⊂ Rn×k be a set of k ≤ n linearly independent
vectors. The lattice generated by B is the set L(B) defined by

L(B) :=

{
k∑
i=1

xibi : x1, x2, . . . , xk ∈ Z

}
.

Lattices are discrete additive subgroups of Rn. The notion of “discrete” refers to the fact that there exists
a real number λ > 0 such that any two points in L are distanced by at least this quantity λ. We will
discuss this λ value more extensively below.

The set B in the above definition is called a basis of L(B). The basis of a lattice is clearly non-unique.
In fact, many algorithmic problems related to lattices reduce to finding a “good” basis of the lattice for
a notion of “good” which we will define later. We will simply write L for L(B) when the context is not
ambiguous. The dimension of the lattice is n and its rank is k. The lattice is said to be full-rank if k = n.
An example of a full-rank 3-dimensional lattice and its basis B = {b1,b2,b3} is given in Figure 2.1.

Lattices differ from the notion of vector space by the fact that only integer coefficients are allowed
in the linear combinations. However, many similar mathematical quantities exist between vector spaces
and lattices.

Let us start with the notion of determinant. Let P(B) be the fundamental parallelepiped of the basis
B = {b1,b2, · · · ,bk}, that is P(B) = {

∑
i xibi : 0 ≤ xi < 1}. Then the determinant of a lattice L(B) is

the volume of P(B). More precisely, we have the following definition.

Definition 10 (Determinant). The determinant of a lattice L with basis B is the volume of the
fundamental parallelepiped, i.e.,

det(L) =
√

det(BTB).

If L is full-rank, then the determinant is given by det(L) = |det([b1, b2, . . . , bn])|.

b1

b3

b2

Figure 2.1: Lattice in dimension 3 with a basis B = {b1,b2,b3} and its fundamental parallelepiped.

Remark 4. The determinant of a lattice L is independent from the choice of the basis B.

The determinant can be upper-bounded by the following inequality.

32



Theorem 3 (Hadamard Inequality). For a given lattice L ⊂ Rn with basis B = {b1, b2, · · · , bk}, we
have det(L) ≤

∏
i ||bi||.

More importantly, the determinant can be computed in polynomial time. Recall that the Gram-
Schmidt orthogonalization (GSO) process transforms the basis B = {b1, · · · ,bk} into a basis of orthog-
onal vectors B∗ = {b∗1, · · · ,b

∗
k} that span the same space as B. The basis B∗ is defined as follows:

let b∗1 := b1 and, for 2 ≤ i ≤ k, let b∗i := bi −
∑i−1
j=1 µi,jb

∗
j , where, for 1 ≤ j < i ≤ k, we have

µi,j :=
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

The Gram-Schmidt orthogonalization of a basis can be computed in polynomial time and from the
Gram-Schmidt orthogonalization of B, we also have

det(L(B)) = vol(P(B)) =

k∏
i=1

||b∗i ||.

Another fundamental notion related to lattices is the minimum distance λ between any two vector
points in the lattice.

Definition 11 (Minimum distance). Let L ⊂ Rn be a lattice. The minimum distance of L is defined
as

λ(L) = inf{||x− y|| : x,y ∈ L,x 6= y}

or equivalently
λ(L) = inf{||v|| : v ∈ L \ {0}}.

This minimum distance corresponds to the length of a shortest non-zero lattice vector. The equivalence
in the definition comes from the fact that lattices are closed under addition and subtraction. Hence,
v = x− y ∈ L \ {0}. Moreover, this definition also implies that λ(L) is the smallest radius r such that a
ball of radius r contains at least one non-zero lattice vector point.

Theorem 4. There is a lattice vector v ∈ L of length exactly λ(L).

The proof of Theorem 4 given in [MG02, Section 1.2] relies on the following result.

Theorem 5. Let L ⊂ Rn be a lattice with basis B = {b1, b2, · · · , bk} and B∗ = {b∗1, b
∗
2, · · · , b

∗
k} the

Gram-Schmidt orthogonalization of B. Then

λ(L) ≥ min
i
||b∗i || > 0.

We refer to [MG02, Theorem 1.1] for the proof of this lower-bound.
The notion of length of the shortest non-zero vector can easily be generalized with the following

definition.

Definition 12 (Successive minima). Consider a lattice L ⊂ Rn of rank k. For i ∈ [1, k], the ith
successive minimum is defined as the quantity

λi(L) = inf{r : dim(span(L ∩Br(0))) ≥ i},

where Br(0) = {x ∈ Rn : ||x|| ≤ r}.

This definition provides the following sequence of parameters λ(L) = λ1(L) ≤ λ2(L) ≤ · · · ≤ λk(L)
which gives the successive minima of the lattice L.

On the contrary of the determinant which can be computed in polynomial time, finding a shortest
non-zero vector in a lattice is hard. In the late 19th century, Minkowski provided an upper bound on
the length of the shortest vector in a lattice. We first state his convex body theorem on which relies his
upper bound.

33



Theorem 6 (Minkowski’s convex body theorem). Let L be an n-dimensional full-rank lattice and S ⊂ Rn
a symmetric convex body such that vol(S) > 2n det(L). Then S contains a non-zero lattice point.

The above theorem is then used to provide the following upper bound.

Corollary 2 (Minkowski’s bound). Given an n-dimensional full-rank lattice L, there exists a non-zero
vector v ∈ L such that ||v|| ≤

√
ndet(L)1/n. In other words, λ(L) ≤

√
n det(L)1/n.

We refer to [MG02, Section 1.3] for the proofs of these results.

Despite Minkowski’s upper bound, it can be noted that λ(L) is usually smaller than
√
ndet(L)1/n.

Moreover, his proof does not provide any computational method to efficiently find these short vectors.
Finding vectors of length λ(L) is among the hard algorithmic problems related to lattices which we will
now discuss.

2.1.2 Algorithmic problems related to Euclidean lattices

Lattices have become tools from which computationally hard related problems are used to design secure
cryptographic primitives. As mentioned above, finding the minimum distance in a lattice is an example
of a hard problem for which no efficient algorithm is known. We will now discuss two of the fundamental
hard problems related to lattices: the Shortest Vector Problem and the Closest Vector Problem, commonly
known as SVP and CVP.

Definition 13 (Shortest Vector Problem (SVP)). For a given lattice L ⊂ Rn with basis B, find a
shortest non-zero vector v ∈ L(B) with ||v|| = λ(L(B)).

Whether SVP is an NP-hard problem has long remained an open question. In 1981, van Emde
Boas [vEB81] proved that SVP is NP-hard for the `∞ norm and conjectured the NP-hardness for the `p
norm for p ≥ 1. Finally, in 1996 Ajtai [Ajt98] proved the NP-hardness of SVP for the `p norm for p ≥ 1
but only under randomized reductions, meaning that an algorithm for SVP would give a randomised
algorithm for any problem in NP. The NP-hardness of SVP under deterministic reductions for `p norms
is still an open question.

A generalization of SVP is the Closest Vector Problem. For t ∈ Rn, the distance between the vector t
and the lattice L is denoted dist(t,L) and represents dist(t,L) = minv∈L(||v− t||).

Definition 14 (Closest Vector Problem (CVP)). For a given lattice L ⊂ Rn with basis B and a target
element t ∈ Rn, find a lattice vector v ∈ L closest to the target element t, i.e., ||v− t|| ≤ dist(t,L).

If the target element t is the origin, then we are looking for a shortest vector. CVP was proven to be
NP-hard with the `p norm for p ≥ 1 and `∞ in 1981 by van Emde Boas [vEB81]. We refer to [MG02,
Chapter 3] for a proof that CVP is NP-hard by reduction from the subset sum problem.

Both SVP and CVP are illustrated in Figure 2.2.

34



t

Figure 2.2: Finding a shortest non-zero vector (left) and a closest non-zero vector (right) to the target t
in a 3-dimensional lattice.

Question 22. What algorithms can one use to solve SVP and CVP?

Both SVP and CVP are hard problems to solve for general lattices and no known efficient algorithms
exist as of today. The hardness of these problems are of course dependent on the dimension n of the
lattice considered. In dimension 2, SVP can be solved using the Lagrange-Gauss algorithm in polynomial
time (1801). However, when the lattice dimension is larger, which is often the case in cryptography, the
best known algorithms to solve SVP and CVP are not in polynomial time.

There exists three main families of algorithms to solve SVP: enumeration algorithms, sieving algo-
rithms and Voronoi cell based algorithms.

The family of enumeration algorithms, originally from Pohst [Poh81] and Kannan [Kan83], provide
the oldest examples of deterministic algorithms that lead to solutions of SVP, however at the cost of
super-exponential running time, i.e., more than 2n, and in this case, at best 2n logn. These algorithms
are interesting as they perform well in practice for relatively small dimensions. We discuss enumeration
algorithms in more details in Section 2.2.

Sieving algorithms are probabilistic algorithms. There exists several variants of sieve algorithms but
all proceed with the following generic idea: from a given list of vectors in the lattice, the algorithm looks
at pairs v,w ∈ L such that ||v −w|| < ||v|| and if so, replaces the vector v by the new, shorter vector
v − w. Depending on the sieve, another vector might get replaced, for example the currently longest
in the database. They offer an asymptotically faster alternative to enumeration with single exponential
running time, however at the cost of randomization and exponential space complexity. We mention
the first sieve algorithm due to Ajtai, Kumar and Sivakumar [AKS01], known as the AKS algorithm,
which was the first algorithm to ever solve a hard lattice problem in single exponential time 2cn, where
c > 0 is a constant. Later variants improved the original AKS algorithm by lowering the constant c. A
provable variant, ListSieve was introduced by Micciancio and Voulgaris in 2010 [MV10c] along with
a heuristic, more practical variant GaussSieve. More heuristic sieve algorithms exist, each improving
on the constant c [NV08, PS09, WLTB11, ZPH14, BGJ15]. The fastest variant as of today is given
in [BDGL16, MLB17] where c = 0.292. Similar algorithms exist also for particular lattices such as ideal
lattices [Sch13, BL16].

Finally, we can also mention the Voronoi cell computation approach [MV10b] which provides cur-
rently the asymptotically fastest known deterministic algorithms with time complexity 22n and space
complexity 2n. These algorithms rely on the computation of the Voronoi cell of the input lattice. The
latter are however not competitive in practice. We refer to [HPS11a] for a description and comparison of
these three families of SVP solvers.

Enumeration and Voronoi cell algorithm can usually be adapted to solve CVP as well with similar

35



cost. On the other hand, it is less obvious whether lattice sieving methods can solve CVP while keeping
the same cost as for solving SVP. In [Laa16], the author presents two different approaches for solving
CVP with sieving methods.

Because no efficient algorithm exists to solve SVP and CVP when the dimension is greater than 2,
approximate versions of these problems exist. These versions allow for an approximation factor γ ≥ 1. We
denote these variants γ-SVP and γ-CVP. The exact version is recovered if one sets γ = 1.

Definition 15 (Approximate Shortest Vector Problem (γ-SVP)). For a given lattice L ⊂ Rn with
basis B and for any γ ≥ 1, find a short non-zero vector v ∈ L(B) with ||v|| ≤ γ · λ(L(B)).

A variant of SVP that has been particularly relevant in cryptography is the unique shortest vector
problem (uSVP) with its approximate version γ-uSVP which corresponds to the problem of finding the
shortest non-zero vector of the lattice, however with the guarantee that the shortest vector is at least γ
times smaller than the next (non-parallel) shortest lattice vector.

Definition 16 (Approximate Closest Vector Problem (γ-CVP)). For a given lattice L ⊂ Rn with
basis B, a target element t ∈ Rn and for any γ ≥ 1, find a lattice vector v ∈ L close to the target
element t, i.e., ||v− t|| ≤ γ · dist(t,L).

These approximate versions of SVP and CVP are illustrated in Figure 2.3. Naturally, the hardness of
γ-SVP and γ-CVP decreases when the approximation factor γ increases.

t

Figure 2.3: Solving γ-SVP (left) and γ-CVP (right) with γ = 3.

Question 23. What are the best algorithms to solve γ-SVP and γ-CVP?

There is an obvious trade-off between the running-time and the approximation factor of algorithms
that solve γ-SVP and γ-CVP. Indeed, there exist polynomial time algorithms for these approximate
variants but only for approximation factors large enough. Efficient algorithms that solve γ-SVP rely on
lattice basis reduction techniques. These algorithms run in polynomial time for approximation factors γ
as small as 2O(n log logn/ logn), where n is the dimension of the lattice. If the approximation factor is

36



asymptotically smaller, then the algorithms have exponential running time in the lattice input size. We
discuss reduction algorithms in Section 2.3.

As for γ-CVP, there are two main approaches. First, Babai’s nearest plane algorithm [Bab85] de-
veloped by Babai in 1986 runs in polynomial time in the input size for γ = 2(2/

√
3)n where n is the

dimension of the lattice. Second, algorithms that solve γ-SVP such as reduction algorithms can usually be
modified to solve γ-CVP. Note that the AKS sieving algorithm was also adapted to solve γ-CVP [AKS02].
In general, the most efficient algorithms that solve γ-CVP are asymptotically as fast as those that solve
γ-SVP.

Question 24. What relations are there between γ-SVP and γ-CVP?

The Shortest and Closest Vector Problems are very similar. It is natural to wonder whether there
exists any reductions between these problems.

Kannan embedding technique. One way to solve γ-CVP is to solve γ-SVP in an adequately con-
structed lattice. Let L be an n-dimensional lattice with basis B = {b1,b2, · · · ,bn} and let t ∈ Rn be the
target vector in CVP. A solution to CVP is then a vector v =

∑n
i=1 xibi ∈ L, xi ∈ Z, such that ||v−t|| is

small. Let w = v− t. The idea behind the embedding technique is to construct a lattice L′ such that the
vector w is contained in L′. By solving SVP in L′ and finding w one can then recover v. The basis B′ of
L′ is one dimension higher and consists of the vectors B′ = {(b1, 0), (b2, 0), · · · , (bn, 0), (t, C)} for some
positive constant C. It is easy to see that the vector w is found as (x1, x2, · · · , xn,−1) ·B′ = (v− t, C).

The main issue with this technique is the size of the vector w. If the latter is much larger than the
shortest vectors in L′, then SVP will not find it.

One can then also wonder whether it is possible to reduce γ-SVP to γ-CVP. The first naive idea for a
reduction would be to solve γ-SVP by solving γ-CVP with target vector t = 0. Indeed, when looking for
the shortest vector of a lattice L, we are intrinsically looking for the closest vector to the origin. However,
this naive reduction does not work as CVP will return the vector 0 which is not a solution of SVP. It
was nonetheless proven in [GMSS99] that γ-SVP is Turing-reducible to γ-CVP in polynomial time for all
γ ≥ 1 meaning that given an oracle for γ-CVP, it is possible to compute answers to γ-SVP. The reduction
preserves the dimension and the approximation factor γ.

2.1.3 Ideal and module lattices
In recent years, cryptographers have turned their attention to lattices with more algebraic structure.
Indeed, while lattices provide a high level of security, protocols based on Euclidean lattices are usual
quite inefficient due to the key size. Ideal and module lattices are examples of structured lattices used
in lattice-based schemes to improve the efficiency of the protocols. We briefly introduce them here and
refer to [SSTX09, PHS19, LPR10, LS15, LPSW19, KEF19] for examples of articles working with ideal
and module lattices.

Let us first start with the notion of cyclic lattice, used for example in NTRUEncrypt [HPS98]. Re-
investigated in [Mic04], they refer to lattices that are invariant under a shift-rotation operator. In other
words, we have the following definition.

Definition 17. A set L ⊂ Rn is a cyclic lattice if L is an ideal in Z[x]/(xn − 1).

Ideal and module lattices are then generalization of cyclic lattices. An element in an ideal lattice
corresponds to a polynomial: (a0, a1, · · · , an−1) ∈ L is the polynomial a =

∑n−1
i=0 aix

i.

Definition 18 (Ideal lattice). The lattice L(B) ⊂ Rn is an ideal lattice if there exists a monic polyno-
mial g ∈ Z[x] such that the lattice element (a0, a1, · · · , adeg g−1) ∈ L if and only if (a′0, a

′
1, · · · , a′deg g−1) ∈

L where a′ = xa (mod g).

The following result describes the family of full-rank ideal lattices.

37



Lemma 1. Let f be an irreducible monic integer polynomial of degree n. Then, every ideal I of Z[x]/(f)
is isomorphic to a full-rank lattice in Zn.

Module lattices are defined similarly as generalizations of ideal lattices. A basis of a module lattice is
a block matrix where each block is the basis of an ideal lattice.

2.1.4 Random lattices and random bases
In order to correctly draw conclusions from either experiments or theoretical results, one must consider
lattices that are random in a mathematical sense. For example, lattices used in cryptography or in
algorithmic number theory are not necessarily random in the sense that the first minimum is often much
shorter than all the other minima.

A random lattice is defined as a lattice chosen from the natural probability distribution on the set of
all lattices. This distribution comes from the notion of Haar measures of classical groups, which we do
not explain here. We refer to [NS06] for more details.

Any (random) lattice has an infinite amount of bases and thus comes the following problem of selecting
a random one. There exists no definition of a random basis, but in simple terms, a random basis should
not be reduced at all, meaning with particularly short vectors. More details are again given in [NS06].

In this thesis, when experimentally validating hypotheses, we use random integer-valued bases of size
k = n using two different constructions made explicit below.

The Ajtai-type bases. The first construction is inspired by the lattice bases used in [Ajt03], and also
used in [NS06]. The Ajtai-type basis is generated as a lower triangular matrix. The diagonal values are
defined as Ai := b2(2n−i+1)αc, where α is a parameter we vary. The other entries ai,j are random integers
bounded by the integer on the diagonal in their row, i.e. |ai,j | ≤ Ai/2, for all 1 ≤ j < i ≤ n. That means,
the basis is given by the rows of the following matrix:

A1

a2,1 A2

a3,1 a3,2 A3

...
. . .

an,1 an,2 an,n−1 An

 .

The Goldstein-Mayer bases. This second construction comes from Goldstein-Mayer [GM03]. Let
p be a prime number with 2bβnc bits, for some parameter β we vary. Further let a1, a2, . . . , an−1 be
randomly generated numbers in {1, 2, . . . , p}. The prime lattice basis is given by the rows of the following
matrix: 

p
a1 1
a2 1
...

. . .
an−1 1

 .

A common result used in the analysis of lattice-based algorithms is the Gaussian Heuristic. For
a random lattice, it stipulates that the number of lattice points inside a measurable set S ⊂ Rn is
proportional to the volume of S. In other words,

Gaussian heuristic. For a full-rank lattice L ⊂ Rn and a set S ⊂ Rn, the number of points in L∩S is
roughly the ratio of the volumes, i.e., vol(S)/vol(L).

2.2 Enumeration to solve exact SVP and CVP
The first and oldest family of algorithms that solve SVP and CVP are enumeration algorithms. Enumer-
ation techniques rely on an exhaustive enumeration of all lattice vector points contained in a convex set.
The first enumeration algorithm was proposed in 1981 by Pohst [Poh81] and a slightly different approach
was given by Kannan [Kan83] in 1983. Generalizations of these algorithm were given by Fincke and
Pohst [FP85] in 1985, and later in 1987 by Kannan [Kan87].

38



These algorithms differ in the choice of the chosen convex set: Pohst initially considered a hypersphere
and Kannan a rectangular parallelepiped. Later on, Kannan chose to enumerate in a hyper-parallelepiped
and Fincke and Pohst generalized Pohst’s original algorithm to a hyper-ellipsoid contained in Kannan’s
hyper-parallelepiped. Since these algorithms are similar, they are often referred to as the Kannan-Fincke-
Pohst (KFP) algorithm.

In 1994, Schnorr and Euchner [SE94] introduced a heuristically faster variant relying on slightly
different techniques. Their algorithm is the most commonly used for cryptanalysis. Further work on
enumeration algorithms continued with major practical improvements due to pruning techniques. The
latter consists in reducing the search space by eliminating some branches of the enumeration tree built
by the algorithms which are less likely to produce the shortest solution, see [GNR10]. New lattice enu-
meration algorithms were also introduced in [MW15] achieving both the optimal asymptotic complexity
and maintaining practicability.

Question 25. Why is enumeration interesting?

The attractiveness of enumeration algorithms comes from both its practicality and theoretical perfor-
mances. One particular advantage that enumeration algorithms have over sieving algorithms is a linear
space complexity in the size of the input. Within the class of polynomial space algorithms, the enu-
meration algorithms are the fastest known algorithms to find exact solutions to SVP. Their worst-case
complexity is 2O(n logn) for lattices of dimension n. Note that sieving algorithms will achieve an asymp-
totic complexity of 2O(n) but at the cost of an 2O(n) space requirement. In practice, they perform well up
to moderately large dimensions, allowing these enumeration algorithms to be used to estimate security
parameters for lattice-based schemes. Recent progress on sieving algorithms, both theoretical [HKL18]
and practical [Duc18, LM18, ADH+19], have however lowered the crossover point between sieving and
enumeration. Enumeration algorithms outperform sieving algorithms up to dimension 70 in practice.
In particular, for exact-SVP the General Sieve Kernel (known as G6K [ADH+19]) outperforms pruned
enumeration implemented in FPLLL by dimension 70.

2.2.1 General framework of enumeration algorithms
Any enumeration algorithm takes as input a lattice basis and outputs non-zero vectors of the lattice
contained in a specific region. The output of the enumeration algorithm can then be used to find the
shortest non-zero lattice vector i.e., a solution to exact-SVP. The considered region is often an n-sphere.

In this section, we consider full-rank lattices of dimension n. Let B = {b1, · · · ,bn} be a basis of the
lattice L considered and let R be a bound chosen such that R ≥ ||b1|| (in order to obtain at least one
non-trivial solution). The algorithm will enumerate all vectors v = (v1, v2, · · · , vn) ∈ Zn such that the
vectors c =

∑n
i=1 vibi ∈ L have norm smaller than R.

Now, recall that from the Gram-Schmidt process, we have the following relation bi = b∗i+
∑i−1
j=1 µi,jb

∗
j .

One can replace the bi’s in the expression of c and get

c =

n∑
i=1

vib∗i +

i−1∑
j=1

viµi,jb∗j

 =

n∑
j=1

(vj +

n∑
i=j+1

µi,jvi)b∗j

 .

The enumeration algorithm is thus looking for the linear combination vectors (v1, · · · , vn) such that

||c||2 =

n∑
j=1

(vj +

n∑
i=j+1

µi,jvi)
2||b∗j ||2

 ≤ R2.

Question 26. How to enumerate efficiently?

The question now remains how to efficiently find these vectors c of bounded norm. The main idea of
enumeration algorithms is to reduce the search of the entire n-space to an exhaustive search in an interval,
hence a space of dimension 1. In other words, let k < n and suppose the coefficients vk+1, · · · , vn of the
vector v are fixed. Then, there exists only a finite number of admissible values for vk which lie in a

39



bounded interval. These are the values that need to be enumerated.

2.2.2 Constructing an enumeration tree
Enumeration algorithms consider projections of the lattice L. Since the norm of vectors cannot increase
under orthogonal projections, enumeration algorithms proceed recursively by looking at the orthogonal
projections πk on the set {b1, · · · ,bk−1}⊥ for decreasing values of k and π1 is the identity. The projection
of the vector c for a given k = 1, 2, · · · , n is then

πk(c) =

n∑
j=1

(vj +

n∑
i=j+1

µi,jvi)πk(b∗j )

 .

By the Gram-Schmit process, we know that b∗j ⊥ {b1, · · · ,bj−1}, and thus b∗j ∈ {b1, · · · ,bj−1}⊥.
Since πk is defined as the orthogonal projection on the set {b1, · · · ,bk−1}⊥, we then have πk(b∗j ) = b∗j
for all k ≤ j. Indeed, since b∗j ∈ {b1, · · · ,bj−1}⊥ and k ≤ j, in particular, b∗j ∈ {b1, · · ·bk−1}⊥. Thus
the orthogonal projection of b∗j on the set {b1, · · ·bk−1}⊥ is the vector b∗j itself. When k > j, we have
πk(b∗j ) = 0 since b∗j ⊥ b1, · · · ,bj−1 but b∗j 6⊥ bj , · · · ,bk.

Finally, the projection of the vector c can be re-written as

πk(c) =

n∑
j=k

(vj +

n∑
i=j+1

µi,jvi)b∗j

 .

Question 27. How is the enumeration tree constructed?

The enumeration algorithm constructs a tree of depth n where each level k corresponds to the set of vectors
in the projected lattice πk(L) for k = 1, · · · , n of norm less than R. The root of the tree corresponds to
the zero vector since at k = n+ 1 we have πn+1(L) = {0} and the leaves are vectors of L of norm smaller
than R since π1(L) = L. Figure 2.4 illustrates an enumeration tree constructed by the algorithm.

If a vector c ∈ πk(L) corresponds to a node, then its descendants are the vectors πk−1(c) ∈ πk−1(L)
such that the norms of the projected vectors remain less than R. Note that when descending in the
enumeration tree, the vectors have more coefficients as we project “less” and thus the norms increase.

At each level of the tree, the algorithm thus verifies that the projected vector has norm smaller than
R, i.e., that

||πk(c)||2 =

n∑
j=k

(vj +

n∑
i=j+1

µi,jvi)
2||b∗j ||2

 ≤ R2, (2.1)

for k ∈ [1, n]. If at some point in the enumeration process ||πk(c)||2 > R2, then the enumeration algorithm
ignores the corresponding subtree since the norm can only increase as mentioned before.

Question 28. How does the enumeration algorithm proceed?

Concretely, the enumeration algorithm will start by considering the leaves of the tree corresponding to
the vectors c = v1b1 ∈ L, updating the value v1 = 1, 2, · · · for as long as the norm of c remains less
than R.

When this condition is not satisfied anymore, the algorithm goes up in the enumeration tree and looks
at the nodes next to π2(c) at level k = 2 corresponding to the vectors v2b2. Each time the coefficient
v2 is updated, thus changing the vector c, the algorithm reconsiders the condition ||π2(c)|| < R. If the
condition is not satisfied, the algorithm goes up to the next level.

On the other hand, if the condition is satisfied, the algorithm considers the corresponding subtree, and
descends in this case back to k = 1 verifying if the vectors v1b1 + v2b2 have norms smaller than R (now
updating the v1 coefficient again). The process is repeated until an exhaustive search of all coefficients
vi for i = 1, · · ·n is done. The algorithm terminates when it reaches the level k = n+ 1. By construction

40



root

...
...

...

· · · k = 1

k = 2

k = 3

k = 4

k = 5

c = b1 − b2 + b3 + b4

π2(c) = �
�?b∗1 +?b∗2+?b∗3+?b∗4

π3(c) = �
�?b∗1 +�

�?b∗2 +?b∗3+?b∗4

π4(c) = �
�?b∗1 + �

�?b∗2 + �
�?b∗3 + ?b∗4

Figure 2.4: Illustration of the enumeration tree for n = 4. The coeffients ? in front of the b∗i are explicited
above (in Equation 2.1 for example).

of the algorithm, whenever it considers a coefficient vk at level k, the coefficients vi for i > k are either
known or equal to 0.

The above Inequality 2.1 can be translated into the following inequality

∣∣vk +

n∑
i=k+1

µi,kvi
∣∣ ≤

√
R2 −

∑n
j=k+1(vj +

∑n
i=j+1 µi,jvi)

2||b∗j ||2

||b∗k||
. (2.2)

Enumerating all possible values for vk then reduces to enumerating values in an interval Ik = [ak, bk].
Let ck =

∑n
i=k+1 µi,kvi be the center of the interval, then

ak =

ck −
√
R2 −

∑n
j=k+1(vj +

∑n
i=j+1 µi,jvi)

2||b∗j ||2

||b∗k||


and

bk =

ck +

√
R2 −

∑n
j=k+1(vj +

∑n
i=j+1 µi,jvi)

2||b∗j ||2

||b∗k||


Question 29. How can we efficiently enumerate in the interval Ik?

One major difference between Pohst’s original algorithm (also used in Kannan’s work) and Schnorr-
Euchner’s variant is the strategy used to enumerate within these intervals. Indeed, Pohst’s strategy
consists in starting at the lower bound of the interval and increasing the coefficients, i.e., computing
ak, ak + 1, ak + 2, · · · , bk. The KFP algorithm is described in Algorithm 1 and the initialization of the
interval is highlighted in blue at line 14. The exploration of the interval is given by line 18 (also in blue).

On the other hand, Schnorr-Euchner’s algorithm uses a zig-zag strategy and starts at the center ck
of the interval. The values explored are then either ck, ck − 1, ck + 1, ck − 2, ck + 2, · · · or ck, ck + 1, ck −
1, ck + 2, ck − 2, · · · as illustrated in Figure 2.5.

41



ck

ck + 1ck − 1

ck + 2

Figure 2.5: Zig-zag strategy used in Schnorr-Euchner’s enumeration algorithm.

The algorithm is detailed in Algorithm 2 and this upgrade of the vk coefficients is highlighted as
ck + jump line 14 and 21. Since Schnorr-Euchner’s algorithm will be used in Chapter 4 and thus explained
in more details, we purposely leave a simplified pseudo-code.

Note that these enumeration procedures as written above output the list of all vectors c ∈ L of norm
smaller than a bound R. The leaves of the enumeration tree corresponds to these solution vectors c. A
depth-first search can be performed on the enumeration tree in order to find the shortest non-zero vector.

Question 30. What are the main differences between these two strategies?

Recall that the end-goal of the enumeration algorithms is to find a shortest non-zero vector of the lattice L.
Schnorr-Euchner’s algorithm is an improvement on the Kannan-Fincke-Pohst algorithm as the zig-zag
strategy to enumerate in the interval Ik is more efficient. By starting at the center of the interval, the
values ||πk(c)||2 are looked at in an incresing order. This maximizes the likelihood of quickly finding the
shortest solutions such that ||πk(c)||2 ≤ R2. When pruning the enumeration tree, one can also reduce
the value of R once a solution is found to exclude some (useless) branches.

2.2.3 The complexity of enumeration algorithms
The complexity of the enumeration procedures is directly related to the number of loops in the algorithms.
At each level k, the size of the interval Ik is roughly proportional to 2R/||b∗k||. It corresponds to the
number of nodes at level k, i.e, the number of internal loops. Hence, the overall number of iterations in
the enumeration algorithm can be bounded by

∏n
i=1b

2R
||b∗i ||

+ 1c. This quantity is highly affected by the
size of the norms ||b∗i ||. These norms depend on the input basis which is often pre-processed by reduction
algorithms.

Question 31. What is the impact of the quality of the input basis?

The running-time of the enumeration algorithms varies depending on the input basis. In order to improve
the running-time of these algorithms, pre-processing on the input basis can be done. Indeed, we will see
in the next section that reduction algorithms make sure the norms ||b∗i || do not decrease too quickly, i.e.,
that ||b∗i ||2 ≤ ε||b

∗
i+1||2 for a small value ε which depends on the reduction algorithm.

Fincke and Pohst’s initial algorithm uses the LLL algorithm to reduce the input basis and achieves a
2O(n2) running-time for a lattice of dimension n. One major difference in Kannan’s work is the initial pre-
processing step. Indeed, Kannan uses a much stronger reduction on the input basis by making recursive
calls to the enumeration procedure in lower dimension (see the notion of HKZ-reduced basis in [HS07]).
Kannan showed in [Kan87] that using this stronger reduction makes the running-time drop from 2O(n2) to
2O(n logn). A detailed analysis of Kannan’s algorithm is given in [HS07]. Kannan’s algorithm is however
not used in practice as the pre-processing of the input basis is often more costly than the enumeration itself
for dimensions we are concerned about. In [MW15], Micciancio and Walter adapted Kannan’s algorithm
and in particular improved the pre-processing cost in order to keep the 2O(n logn) complexity for lattice
enumeration while only making a linear (in n) number of recursive calls during the pre-processing step.

42



Algorithm 1 Kannan-Fincke-Pohst enumeration al-
gorithm
Input: A basis B = {b1, · · · ,bn} of L of dimension n, a
bound R.
Output: List K of vectors c ∈ L of norm smaller than R.
1: Pre-computation: compute all Gram-Schmit coeffi-

cients µi,j for i < j and the norms of the Gram-
Schmidt vectors ||b∗i ||2 for all i ≤ n.

2: K ← {}
3: v = (0, 0, · · · , 0), η = (0, 0, · · · , 0)
4: k = 1
5: while k ≤ n do
6: ηk = (vk + ck)

2 ||b∗k||2
7: if

∑n
j=k ηj ≤ R

2 then . and
∑n
j=k ηj = ||πk(c)||

2

8: if k = 1 then
9: c =

∑n
i=1 vibi

10: K ← K ∪ c
11: v1 = v1 + 1
12: else
13: k = k − 1

14: vk =

⌈
ck −

√
R2−

∑
j>k ηj

||b∗
k
||2

⌉
= ak

15: else
16: k = k + 1
17: vk = vk + 1

18: return K

Algorithm 2 The Schnorr-Euchner enumera-
tion algorithm
Input: A basis B = {b1, · · · ,bn} of L of dimen-
sion n, a bound R.
Output: List K of vectors c ∈ L of norm smaller
than R.
1: Pre-computation: compute all Gram-Schmit

coefficients µi,j for i < j and the norms of the
Gram-Schmidt vectors ||b∗i ||2 for all i ≤ n.

2: K ← {}
3: v = (1, 0, · · · , 0), ρ = (0, 0, · · · , 0)
4: k = 1
5: while k ≤ n do
6: ρk = ρk+1 + (vk − ck)2 ||b∗k||2
7: if ρk ≤ R2 then . and ρk = ||πk(c)||2
8: if k = 1 then
9: c =

∑n
i=1 vibi

10: K ← K ∪ c
11: v1 = v1 + 1
12: else
13: k = k − 1
14: vk = bcke and update jump
15: else
16: k = k + 1
17: vk = vk + jump
18: return K

2.3 Reduction algorithms for Euclidean lattices
We discussed enumeration algorithms that find exact solutions to SVP and CVP. As seen in the previous
section, these algorithms have super-exponential complexity, and thus are not efficient in practice when
the dimension becomes too large, which is often the case in cryptography. However, in many cases in
cryptanalysis, finding the exact solution to SVP is not necessary and approximate solutions are sufficient.
For example, in cryptosystems such as NTRU [HPS98], the secret need not be the shortest vector of a
lattice, but a reasonably short vector of it. Darmstadt Lattice 1.05-approxSVP Challenges were recently
solved in [DSvW21] up to dimension 180. In this section, we discuss polynomial time algorithms that
solve γ-SVP where γ is exponential in the rank of the lattice considered.

A natural approach to solving γ-SVP for lattices of dimension n is to look at reduction algorithms.
Indeed, reduction algorithms transform a lattice basis in order to progressively produce a new basis of
the same lattice with relatively short vectors. Schnorr [Sch87] in 1987 gave a hierarchy of polynomial
time basis reduction algorithms which presents algorithms from the celebrated Lenstra, Lenstra, Lovász
(LLL) [LLL82] algorithm to the block Korkine-Zolotareff reduction (BKZ) [SE94]. In this section, we
briefly cover the LLL algorithm and its most well-known and used in practice block-variant BKZ.

2.3.1 The LLL algorithm
The LLL algorithm can be seen as an extension of Gauss algorithm for lattices of rank greater than 2.
Whereas Gauss algorithm can solve exact-SVP for lattices of rank 2, LLL solves γ-SVP for γ = 2Θ(k),
where k is the rank of the lattice. We start with the definition of a reduced basis.

Definition 19 ((δ, η)-reduced basis). A basis B = {b1, b2, . . . , bk} ⊂ Rn×k is (δ, η)-reduced if there
exists a number δ ∈ (1/4, 1] and 1/2 ≤ η <

√
δ such that the following two conditions on the Gram-

43



Schmidt orthogonalized basis {b∗1, b
∗
2, . . . , b

∗
k} := GSO(B) are satisfied:

• For 1 ≤ j < i ≤ k, we have |µi,j | ≤ η,

• For 1 ≤ i < k, we have δ‖b∗i ‖2 ≤ µ2
i+1,i‖b

∗
i ‖2 + ‖b∗i+1‖2,

where the µi,j are the Gram-Schmidt coefficients.

The first condition is called size-reduction. The value of η in the original LLL paper is set to η = 1/2.
The second condition is called Lovász condition and regulates the size between two consecutive reduced
vectors, meaning that there is never a huge gap between ||b∗i || and ||b

∗
i+1||. The original paper sets

δ = 3/4.
To find such bases, one can use the LLL algorithm which we recall in Algorithm 3 when η = 1/2.

The LLL algorithm produces a (δ, 1/2)-reduced basis for lattices with integer-valued basis vectors. More
precisely, for k ≤ n, it takes as input a basis B := {b1,b2, . . . ,bk} ⊂ Zn×k and outputs a (δ, 1/2)-reduced
basis Bred := {b̃1, b̃2, . . . , b̃k} ⊂ Zn×k such that of L(Bred) = L(B).

Algorithm 3 The LLL algorithm
Input: A lattice basis B = {b1,b2, · · · ,bk} ⊂ Zn×k
Output: A (δ, 1/2)-reduced basis for L(B).
1: compute all b∗i and µi,j using GSO.
2: for i = 2 to k do
3: for j = i− 1 to 1 do
4: bi ← bi − ci,jbj where ci,j = dµi,jc
5: swapping:
6: if ∃i < k such that δ‖b∗i ‖2 > µ2

i+1,i‖b
∗
i ‖2 + ‖b∗i+1‖2 then

7: bi ↔ bi+1

8: go to 1:

9: return b1, . . . ,bk

Remark 5. We have presented here the classical LLL algorithm that uses rational arithmetic for the
Gram-Schmidt process. It was originally noted in [Sch86] that the algorithm can be considerably sped up by
using floating-point approximations. Floating-point arithmetic is used in all competitive implementations
of LLL (Magma, NTL, fplll for example).

Complexity of LLL. The complexity of LLL depends on the number of iterations in the algorithm and
the complexity of each iteration. The number of iterations in the algorithm corresponds to the number
of times two adjacent vectors are swapped. An upper bound on the number of iterations can be given
thanks to a quantity known as the potential D of the lattice. It is shown in [MG02, Lemma 2.9] that the
number of iterations is polynomial as long as δ remains less than 1.

In order to prove that the cost of each iteration is polynomial, one can look at the number of arithmetic
operations performed in each loop and the size of the quantities used. It can easily be seen that the number
of arithmetic operations is polynomial. As for the size of the rationals involved in the algorithm, the
precision required and their magnitude is discussed in [MG02]. The complexity of LLL is summarized in
the following theorem.

Theorem 7 ([MG02], Theorem 2.10). There exists a polynomial time algorithm that on input a basis
B ∈ Zn×k, outputs a (δ, 1/2)-reduced basis of L(B) with parameter δ = (1/4) + (3/4)k/(k−1).

The approximation factor of LLL in theory. The LLL algorithm outputs a first vector which is
short, i.e., close to λ1(L) up to some approximation factor. The latter can be expressed as follows.

Lemma 2. Let B = {b1, b2, · · · , bk} ⊂ Rn×k be an LLL (δ, η)-reduced basis. Then the shortest vector b1

satisfies ||b1|| ≤ α((k−1)/2)λ1(L) or similarly ||b1|| ≤ α((k−1)/4)(detL)1/k where α = 1/(δ − η2).

44



Proof. The second condition of a (δ, η)-reduced basis can be rewritten as (δ − µ2
i+1,i)||b

∗
i ||2 ≤ ||b

∗
i+1||2.

For any δ ∈ (1/4, 1], let α = 1
δ−η2 . Then ||b

∗
i ||2 ≤ α||b

∗
i+1||2 as |µi,j | ≤ η. This means we have

||b1||2 ≤ αi−1||b∗i ||2 ≤ αk−1||b∗i ||2. (2.3)

Because this is valid for all i = 1, 2, · · · , k, we must have

||b1|| ≤ α(k−1)/2 min
i
||b∗i || ≤ α(k−1)/2λ1(L),

using the bound in Theorem 5. This proves the first relation.
As for the bound with the determinant, we have from Inequality 2.3,

||b1||k ≤
k∏
i=1

α(i−1)/2||b∗i || = α
∑k
i=1(i−1)/2

k∏
i=1

||b∗i ||︸ ︷︷ ︸
=det(L)

= αk(k−1)/4 det(L).

When choosing the initial parameters for δ and η taken as in [LLL82], that is δ = 3/4 and η = 1/2,
we conveniently get α = 2. The above lemma then shows that the first vector outputted by the LLL
algorithm will be a solution to γ-SVP for γ = 2(k−1)/2.

However, in practice as explained in [NS06], one usually chooses δ ≈ 1, the limit value for which LLL
runs in polynomial time, and η ≈ 1/2 in order to obtain the first vector b1 as short as possible (i.e.,
the value α as small as possible). In this case, one gets α ≈ 4/3. This gives an approximation factor
γ = α(k−1)/2 =

(
2/
√

3
)k−1

.
The worst-case bound on the length of the shortest vector outputted by LLL can also be seen as

‖b1‖
(detL)1/k

≤ (4/3)(k−1)/4 / 1.075k. (2.4)

This bound is tight in the worst-case.

The approximation factor of LLL in practice. Despite being significantly used for cryptographic
purposes for many years now, there remains a gap between the theoretical understanding of the LLL re-
duction algorithm and its experimental behaviour. Many works have provided experimental observations
for the behaviour of LLL. In particular, the work [GN08, NS06] have shown that LLL behaves much better
in practice than expected, i.e., better than its proved worst-case theoretical bounds. More precisely, the
authors look at the upper bound on the norm of the shortest vector outputted by LLL. In the worst case,
if b1 is the shortest vector in the LLL-reduced basis, then we have seen that ||b1|| ≤ α(k−1)/4(detL)1/k.
In [NS06, Heuristic 1], the authors experimentally show that this quantity α(k−1)/4 for any random ba-
sis of almost any lattice of dimension k is closer to 1.02k, whereas the worst-case bound for practical
parameters gives 1.075k.

Another interesting approach that has emerged with the work of Madritsch and Vallée is modelling
the LLL algorithm using a tool from the study of discrete dynamical systems called sandpiles mod-
els [MV10a, DKTW19].

The following Section 2.3.2 presents some work done with George Sullivan, Nadia Heninger and
Daniele Micciancio from UCSD in order to better understand this gap between theory and practice. We
provide an alternative experimental method to find the value 1.02 given in [NS06, Heuristic 1] as well as
open questions. We refer to this value as the root approximation factor.

2.3.2 Analyzing LLL via a directed graph
Let us consider a (fixed) random full-rank lattice L of dimension n with a given initial basisA. LetGL(V,E)
denote the directed graph defined as follows. The nodes V correspond to LLL-reduced bases. Moreover,
there exists an edge between the nodes Bi and Bj if Bj = LLL(σBi), i.e., one can obtain the reduced
basis Bj by applying LLL to the basis σBi which corresponds to shuffled rows of Bi for a permutation
σ ∈ Sn. Our work attempts at answering the following questions.

45



Question 32. Can the practical behavior of a basis reduction algorithm such as LLL be explained
with the statistical properties of this graph? Is the LLL heuristic root approximation factor the average
length of the first vector of a node?

We start by considering the number of nodes in the graph GL(V,E). We fix a random lattice L of
dimension n whose basis is either an Ajtai-type basis or a Goldstein-Mayer basis. An upper bound on
the number of nodes in GL(V,E) corresponds to an upper bound on the number of LLL-reduced bases.

Claim 1 (From [Mic11]). Let L ⊂ Rn be an n-dimensional lattice. There are at most 2O(n3) LLL-reduced
basis.

The proof proceeds by induction and shows that there are 2O((n−i+1)2) possible choices for the vec-
tor bi in a reduced basis. Thus, in total there are at most

∏n
k=1 2O(k2) = 2O(n3) possible LLL-reduced

bases.

Recall that a graph is fully connected if every node has an edge to every other node. On the other
hand, a directed graph is strongly connected if for every pair of nodes x, y there exists a path from x to y
and a path from y to x. We propose the following conjecture on the connectivity of the graph GL(V,E).

Conjecture 1. The graph GL(V,E) is fully connected but not strongly connected.

This conjecture has been verified in small dimension, up to n = 10. Indeed, for such small dimensions,
we were able to compute the entire graph, and thus enumerate all the LLL-reduced bases of a given input
lattice L. In all of our experiments, we indeed observed that the graph was fully connected. Any reduced
basis can be obtained by a sequence of permutations (σ1, σ2, · · · , σi) ∈ Sin, for some i ≥ 1 and reductions.

On the other hand, the graph being not strongly connected implies that there exists two bases, say A
and B, such that there exists a sequence of permutations allowing to reduce A to B but there is no
sequence of permutations that reduces B to A.

Using random walks

In order to explore as many nodes as possible, we consider random walks on GL(V,E). A random walk
on a graph G = (V,E) starts at a given node v0 and at each step of the walk moves to a neighbor node
with some probability p. The sequence of nodes constitutes a Markov chain.

We define the following random walks on the graph GL(V,E). For a single walk j of k steps, let
ωj = (σj1, σ

j
2, . . . , σ

j
k) be a sequence of k permutations, where σji ∈ Sn for i = 1, . . . , k. Consider the

following function
Lσ : Zn×n → Zn×n

B 7→ Lσ(B) = LLL(σB),

which takes a basis B and a permutation σ ∈ Sn and outputs the LLL-reduced basis of σB, where the
rows of B are shuffled by σ. Moreover, we define

λexp : Zn×n → R

B 7→ λexp(B) :=

(
||b1||

det(B)1/n

)1/n

.

At each step i ≤ k of the walk, the algorithm considers a random permutation σji and computes the
quantity λexp(Lσji (Bi)). The detailed description of this walk is given by Algorithm 4. In the rest of the
section, we will add the subscript (i) to the value λexp to indicate that it is the value computed at the ith
step.

In theory, one can then average over all possible permutations. At step i, we can rewrite the average
value of the quantity λexp as:

µ
(i)
A =

(
1

n!

)i ∑
(σ1,...,σi)∈Sin

λexp
(
Lσi

(
Lσi−1

(· · ·Lσ2
(Lσ1

(A)))
))
.

46



Algorithm 4 Random walk on the graph GL(V,E)

Input: A random lattice basis A ⊂ Zn×n, a number k of steps.
Output: A list L of root approximation factors.
1: L = {}
2: Reduce initial basis A with LLL, i.e., B0 ← LLL(A);

3: Compute λexp(B0)←
(

‖b1‖
det(B0)1/n

)1/n

and add to L.
4: for i = 0 to k − 1 do
5: Select a random permutation σ ∈R Sn.
6: Reduce shuffled basis with LLL, i.e., Bi+1 ← Lσ(Bi).
7: Compute λexp(Bi+1) and add to L.
8: i← i+ 1.
9: return L.

Figure 2.6: Single and multiple walks on GL for an Ajtai random basis of dimension 100.

Open Question 1. Can one theoretically compute limi→∞ µ
(i)
A for a random basis A as a function of

the dimension n and show that this limit is indeed smaller than 1.075?

Experimental results for the approximation factor

In practice, as n grows, so does the number n! of possible permutations, and thus we consider only a
subset of potential walks. In our experiments, we average over T walks, for some chosen value of T .
When considering T walks, one obtains T different sequences ω1, . . . , ωT of permutations, and at each
step i one can compute the average value of λ(i)

exp, i.e., µ(i) = E[λ
(i)
exp]. All the experiments are run using

Sage’s default LLL implementation.

Conjecturing the value of the approximation factor. For a fixed random lattice L of dimension n,
we start T different random walks from the same initial random basis A. The sequences {λ(i)

exp}ki=1, for a
single walk, and {µ(i)}ki=1, for T = 1000 walks are illustrated in Figure 2.6 for an Ajtai-type random basis
of dimension n = 100 and k = 1000 steps. When considering the average value of λexp over the T walks
considered, one can see that the root approximation factor converges to 1.017, slightly less than 1.02.

We extensively ran such experiments for dimensions varying between 50 and 300, averaging over
T = 1000 walks each performing k = 250 steps. Figure 2.7 shows the approximation factor as a function
of the dimension, where the value reported is the average value obtained at the last step k = 250 of our
walks. The curve tends to the expected approximate 1.02 value.

Based on Figure 2.7, we suggest the following conjecture where we fit the data to a function of the
form a+ b

x+c for a, b, c ∈ R using Sage.

47



Figure 2.7: Approximation factor of LLL as a function of the dimension n of the lattice. For each
dimension n, we take the value reached after 250 steps from our random walk and average over T = 1000
walks.

Conjecture 2. For a fixed dimension n, we get limi→∞ µ
(i)
A = 1.0227− 0.5232

n−9.5913 , where A is a random
basis.

2.3.3 The BKZ algorithm
The best approximation algorithm known in practice for large dimensions is the Blockwise-Korkine-
Zolotarev (BKZ) algorithm, published by Schnorr and Euchner in 1994. It uses Schnorr-Euchner’s enu-
meration algorithm as a subroutine for smaller rank sublattices. BKZ and BKZ2.0 (which uses enumer-
ation with extreme pruning) is implemented in the fplll library and is extensively used to benchmark
the security of lattice-based schemes.

The Schnorr-Euchner’s BKZ algorithm can be seen as a generalization of LLL where instead of con-
sidering pairs of vectors, one looks at blocks of projected vectors. BKZ thus has an additional parameter
β ≥ 2 which corresponds to the blocksize considered. Let us consider a full-rank lattice of dimension n.
For each block B[i,min(i+β−1,n)] the algorithm ensures that the first vector is the shortest vector in that
particular projected lattice by running any (approximate) SVP oracle such as an enumeration algorithm
on the projected lattice. We recall the BKZ algorithm in Algorithm 5. Note that β = 2 corresponds
to the LLL algorithm, where only a swaping step is considered. A BKZ-reduced basis thus satisfies a
stronger condition than an LLL-reduced basis. Indeed, we have the following definition.

Definition 20 (BKZ reduced basis). A basis B = {b1, b2, · · · , bn} ⊂ Rn×n is BKZ-reduced with
blocksize β ≥ 2 if it (δ, 1/2)-reduced and additionally, for each 1 ≤ i ≤ n, we have ||b∗i || =
λ(L(B[i,min(i+β−1,n)])).

Because BKZ calls an enumeration algorithm as a subroutine, there is an obvious tradeoff between
the quality of the output basis and the running time of the algorithm. The larger the blocksize β, the
more reduced the output basis is, but the cost increases as the cost of enumeration is in 2O(β2). Kannan’s
tighter bound mentioned previously is actually achieved in practice, see [ABF+20]. When the blocksize

48



Algorithm 5 The BKZ algorithm
Input: A lattice basis B = {b1,b2, · · · ,bn} ⊂ Zn×n, a block-size β.
Output: A BKZ reduced basis for L(B).
1: Compute the Gram-Schmidt coefficients µi,j and ||b∗i ||2 for 1 ≤ j ≤ i ≤ n.
2: z ← 0, i← 0
3: LLL(b1, · · · ,bn) . LLL-reduce the basis
4: while z < n− 1 do
5: i← (i (mod n− 1)) + 1 . Defining the blocks
6: k ← min(i+ β − 1, n)
7: h← min(k + 1, n)

8: v← Oracle-SVP(B[i,k], λ(L[i,k])) . Find v ∈ Zk−i+1 \ 0 s.t. ||πi(
∑k
j=i vjbj)|| = λ(L[i,k])

9: if v 6= (1, 0, · · · , 0) then
10: z ← 0
11: LLL(b1, · · · ,bi−1,

∑k
j=i vjbj ,bi, · · · ,bh) . Adding new vector at the beginning of the block.

12: else
13: z ← z + 1 . LLL-reduce the next block prior to enumeration.
14: LLL(b1, · · · ,bh)

15: return (b1, · · · ,bn).

is large, i.e., β ≥ 30, the overall cost of BKZ is dominated by the cost of the enumeration subroutine.
The output quality of BKZ and the trade-offs between the approximation factor and the running-time
of BKZ are studied in [GN08, HPS11b]. The smallest approximation factor γ for which BKZ runs in
polynomial time is γ = 2O(n log logn/ logn). A recent analysis of the BKZ algorithm is given in [LN20].

49



50



Part II

The discrete logarithm problem in
finite fields

51





Chapter 3

Asymptotic analysis of DLP algorithms
at the first boundary

In this chapter, we study the discrete logarithm problem at the boundary case between small and medium
characteristic finite fields, which is precisely the area where finite fields used in pairing-based cryp-
tosystems live. In order to evaluate the security of pairing-based protocols, we thoroughly analyze the
asymptotic complexity of all the algorithms that coexist at this boundary case: the Quasi-Polynomial
algorithms, the Number Field Sieve and its many variants, and the Function Field Sieve. We adapt
the latter to the particular case where the extension degree is composite, and show how to lower the
complexity by working in a shifted function field. All this study finally allows us to give precise values for
the characteristic asymptotically achieving the highest security level for pairings. Surprisingly enough,
there exist special characteristics that are as secure as general ones.

This chapter is joint work with Pierrick Gaudry and Cécile Pierrot and was published in the
proceedings of the Crypto 2020 conference [DGP20].

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1 Motivation: pairing-based protocols . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The FFS algorithm at the boundary case . . . . . . . . . . . . . . . . . 56
3.2.1 Complexity analysis of FFS . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 The pinpointing technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Fixing a rounding bug in the FFS analysis of [SS16a] . . . . . . . . . . . . 58
3.2.4 Improving the complexity of FFS in the composite case . . . . . . . . . . 59

3.3 Tools for the analysis of NFS and its variants . . . . . . . . . . . . . . . 60
3.3.1 General methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Smoothness probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Methodology for the complexity analysis of NFS . . . . . . . . . . . . . . 63

3.4 Polynomial selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Polynomial selections for NFS and MNFS . . . . . . . . . . . . . . . . . . 64
3.4.2 Polynomial selections for exTNFS and MexTNFS . . . . . . . . . . . . . . 66
3.4.3 Polynomial selections for SNFS and STNFS . . . . . . . . . . . . . . . . . 67

3.5 Complexity analyses of (M)(ex)(T)NFS . . . . . . . . . . . . . . . . . . 67
3.5.1 (M)NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.2 (M)exTNFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.3 S(T)NFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

53



3.6 Crossover points between NFS, FFS and the Quasi-Polynomial algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.1 Quasi-Polynomial algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6.2 Crossover between FFS and QP . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6.3 Crossover between NFS and FFS . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Considering pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7.1 Landing at p = LQ(1/3) is not as natural as it seems . . . . . . . . . . . . 75
3.7.2 Fine tuning of cp to get the highest security . . . . . . . . . . . . . . . . . 76
3.7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Introduction
3.1.1 Motivation: pairing-based protocols
Pairing-based cryptography illustrates the need to consider both the discrete logarithm problems on finite
fields and on elliptic curves. Let us recall that a cryptographic pairing is a bilinear and non-degenerate
map e : G1×G2 → GT where G1 is a subgroup of E(Fp), the group of points of an elliptic curve E defined
over the prime field Fp, G2 is another subgroup of E(Fpn) where we consider an extension field and GT is
a multiplicative subgroup of that same finite field Fpn . To construct a secure protocol based on a pairing,
one must assume that the DLPs in the groups G1,G2,GT are hard.

Evaluating the security in G1 and G2 is straightforward, since very few attacks are known for DLP on
elliptic curves. The most efficient known algorithm to solve the DLP in the elliptic curve setup, without
any particular considerations on the curve, is Pollard’s rho algorithm presented in Chapter 1.

On the contrary, the hardness of the DLP over finite fields is much more complicated to determine.
Indeed, there exist many competitive algorithms that solve DLP over finite fields. When p is relatively
small, Quasi-Polynomial time algorithms can be designed, but when p grows, the most efficient algorithms
have sub-exponential complexity.

To construct a secure protocol based on a pairing, one must first consider a group GT in which
Quasi-Polynomial time algorithms are not applicable. This implies, to the best of our knowledge, that
the algorithms used to solve DLP on the finite field side have an Lpn(1/3) complexity. Moreover, we
want the complexities of the algorithms that solve DLP on both sides to be comparable. Indeed, if the
latter were completely unbalanced, an attacker could solve DLP on the easier side. A natural idea is
then to equalize the complexity of DLP on both sides. This requires having √p = Lpn (1/3). Hence, the
characteristic p is chosen of the form p = Lpn (1/3, cp) for some constant cp > 0.

Yet, when the characteristic p is of this form, many algorithms coexist rendering the estimation of
the hardness of DLP all the more difficult. A recent approach, followed in [Gui20] is to derive concrete
parameters for a given security level, based on what the Number Field Sieve algorithm (NFS) would cost
on these instances. Our approach complements this: we analyze the security of pairings in the asymptotic
setup, thus giving insight for what would become the best compromise for higher and higher security levels.

The focus of this chapter is to study the complexity of all the algorithms that solve DLP at the first
boundary case p = Lpn(1/3, cp) and to answer the following question:

Question 33. Asymptotically what finite field Fpn should be considered in order to achieve the highest
level of security when constructing a pairing?

This requires a significant amount of work in order to evaluate which algorithm is applicable and which
one performs best. Figure 3.1 gives the general picture, without any of the particular cases that can be
encountered. Figure 3.1 is actually of zoom of Figure 1.5 from Chapter 1 which focuses on our area of
interest.

3.1.2 Contributions
More specifically, we propose the following contributions.

Thorough analysis of the complexity of FFS, NFS and its variants. We first give a precise
methodology for the computation of the complexity of NFS and its variants at the boundary case, which

54



small characteristic medium characteristic

QP MNFS

Lpn(1/3, cp)

FFS Variants of NFS

Figure 3.1: Best algorithms for DLP in small, medium characteristics and at the boundary case p =
Lpn (1/3, cp).

differs from the computations done in medium and large characteristics. We revisit some commonly
accepted hypotheses and show that they should be considered with care. In addition, our analysis
allowed us to notice some surprising facts. First of all, not all the variants of NFS maintain their Lpn(1/3)
complexity at the boundary case. The variant STNFS, for example, has a much higher complexity in this
area, and thus should not be used for a potential attack on pairings. For some special characteristics,
SNFS is also not faster than MNFS, as one could expect. We also distinguish and correct errors in past
papers, both in previous methodologies or computations.

FFS still remains a competitor for small values of cp. This chapter then takes a closer look at its
complexity, also fixing a mistake in the literature. Furthermore, in the case where the extension degree
n is composite, we show how to lower the complexity of FFS by working in a shifted function field.

Crossover points between all the algorithms. This complete analysis allows us to identify the best
algorithm at the boundary case as a function of cp and give precise crossover points for these complexities.
When cp is small enough, the FFS algorithm remains the most efficient algorithm outperforming NFS
and all of its variants. When the extension degree n is prime, and the characteristic has no special form,
the algorithm MNFS outperforms FFS when cp ≥ 1.23. When n is composite or p taken of a special form,
variants such as exTNFS and SNFS give crossover points with lower values for cp, given in this chapter.

Moreover, we compare the complexity of FFS and the complexity of the Quasi-Polynomial algorithms.
Since the crossover point occurs when p grows slightly slower than Lpn(1/3), we introduce a new defini-
tion in order to determine the exact crossover point between the two algorithms.

Security of pairings. All the work mentioned above allows us to answer the following question:
asymptotically what finite field Fpn should be considered in order to achieve the highest level of security
when constructing a pairing? To do so, we justify why equating the costs of the algorithms on both
the elliptic curve side and the finite field side is correct and argue that in order for this assumption
to make sense, the complete analysis given in this chapter was necessary. Finally, we give the optimal
values of cp for the various forms of p and extension degree n, also taking into account the so-called
ρ-value of the pairing construction. Surprising fact, we were also able to distinguish some special charac-
teristics that are asymptotically as secure as characteristics of the same size but without any special form.

Asymptotic complexities versus practical estimates. The fact that STNFS is asymptotically no longer
the best algorithm for optimally chosen pairing-friendly curves is not what could be expected from the
study of [Gui20], where fixed security levels up to 192 bits are considered. This could be interpreted as a
hint that cryptanalists have not yet reached some steady state when working at a 192-bit security level.
To sum it up, evaluating the right parameters for relevant cryptographic sizes (e.g. pairings at 256-bit of
security level) is still hard: estimates for lower sizes and asymptotic analysis do not match, and there is
no large scale experiment using TNFS or variants to provide more insight.

55



3.2 The FFS algorithm at the boundary case
We consider a finite field of the form Fpn , where p is the characteristic and n the extension degree. From
now on, we set Q = pn. Since our analysis is asymptotic, any factor that is ultimately hidden in the
o(1) notation of the LQ expression is ignored. Furthermore, inequalities between quantities should be
understood asymptotically, and up to negligible factors.

Recall that the characteristic p = LQ(1/3, cp) and from the definition of the LQ-notation we deduce

n = 1
cp

(
logQ

log logQ

)2/3

.

3.2.1 Complexity analysis of FFS
We have seen in Chapter 1 how the Function Field Sieve algorithm instantiates itself in the general
framework of index calculus algorithms. In this section, we focus on a simpler variant of FFS introduced
by Joux and Lercier [JL06] which does not require the theory of function fields.

Joux-Lercier setup for FFS.

The algorithm starts by choosing two univariate polynomials f1, f2 ∈ Fp[x] of degrees n1, n2 respectively
such that n1n2 ≥ n and there exists a degree-n irreducible factor I of x − f2(f1(x)). Then, let us set
y = f1(x), which constitutes a first equation. In the target finite field represented as Fp[x]/(I(x)), we
therefore also have the second equation x− f2(y) or similarly x = f2(y) (mod I). The factor basis F is
defined as the set of all univariate, irreducible, monic polynomials of degree D for some constant D, in x
and y. As usual, the sieving phase computes multiplicative relations among elements of the factor basis,
that become linear relations between discrete logarithms. We sieve over bivariate polynomials φ(x, y) of
the form φ(x, y) = A(x)y + B(x), where A,B have degrees d1, d2 and A is monic. As an element of the
finite field, this can be rewritten either as a univariate polynomial in x, namely Fx(x) = φ(x, f1(x)), or
as a univariate polynomial in y, namely Fy(y) = φ(f2(y), y). We get a relation if both Fx(x) and Fy(y)
are D-smooth. Once enough relations are collected, the linear algebra and descent steps are performed.

Complexity analysis.

Our description of the complexity analysis of FFS is based on [SS16a]. However, we slightly deviate from
their notations as theirs lead to wrong complexities (see Section 3.2.3 for details).

First, a parameter ∆ ≥ 1 is chosen which controls the balance between the degrees of the defining
polynomials f1 and f2. We select f1 and f2 of degree deg f1 = n1 = d

√
n∆e and deg f2 = n2 = d

√
n/∆e.

Since we use the pinpointing technique, which we recall in Section 3.2.2, we also enforce f1(x) = xn1 or
f2(y) = yn2 , depending on which side we want to pinpoint with.

For the analysis, the smoothness bound D ≥ 1 is also fixed. Once cp, ∆ and D are fixed, we look at
the complexity of the three steps of the algorithm. For the linear algebra, the cost Clinalg is quadratic
in the size of the factor basis, i.e., pD, and thus we get Clinalg = LQ (1/3, 2cpD). For the other steps,
the complexity depends on bounds d1 and d2 on the degree of the polynomials A and B, used to find
relations. Asymptotically, no improvement is achieved by taking d1 6= d2. Therefore, we set the following
notation: d12 = d1 = d2. However, the value d12 is not necessarily the same for the sieving and descent
steps.

Analysis of the sieving step. Asymptotically, we have degFx = n1 and degFy = d12n2. Note that
in truth degFx = n1 + d12 but d12 is a constant, hence can be ignored, since n1 goes to infinity. From
these values and the smoothness bound D, we apply Flajolet, Gourdon and Panario’s theorem [PGF98].
While the general theorem was given in Chapter 1, Corollary 1, we recall that the logarithm of the
D-smoothness probability of a polynomial f is given by logPf = deg f

D log
(

D
deg f

)
.

We then deduce the following smoothness probabilities PFx and PFy using the definitions of n1, n2

and the expression of n as a function of logQ:

PFx = LQ

(
1

3
,
−
√

∆

3D
√
cp

)
, and PFy = LQ

(
1

3
,
−d12

3D
√
cp∆

)
.

56



The number of (A,B)-pairs to explore before having enough relations is then P−1
Fx
P−1
Fy

times the size of
the factor base. To have enough relations, one needs to explore a sufficiently large amount of sieving
polynomials φ(x, y) and this is feasible only if the degree d12 of A and B is large enough. Recalling that
A is monic, this leads to the following constraint: p2d12+1 ≥ P−1

Fx
P−1
Fy
pD, where 2d12 + 1 is the number of

undetermined coefficients in the polynomials φ(x, y).
Furthermore, using the pinpointing technique allows to find relations faster than exploring them all.

We simply state here that the cost per relation with pinpointing is min(P−1
Fx
, P−1

Fy
) + p−1P−1

Fx
P−1
Fy

, more
details being given below. The total cost Csiev for constructing the whole set of relations is then this
quantity multiplied by pD and we get

Csiev = pD−1P−1
Fx
P−1
Fy

+ pD min(P−1
Fx
, P−1

Fy
). (3.1)

Analysis of the descent step. During the descent step, it can be shown that the bottleneck happens
at the leaves of the descent tree, i.e., when descending polynomials of degree D + 1, just above the
smoothness bound. The smoothness probabilities PFx and PFy take the same form as for the sieving step,
but the feasibility constraint and the cost are different. Since we only keep the (A,B)-pairs for which
the degree D + 1 polynomial to be descended divides the corresponding norm, we must subtract D + 1
degrees of freedom in the search space, which becomes p2d12−D. The descent step will therefore succeed
under the following constraint: p2d12−D ≥ P−1

Fx
P−1
Fy
. Indeed, recall from the descent analysis in Chapter 1

that the cost of descending one element is P−1
Fx
P−1
Fy

, as only one relation is enough. Finally, the number
of nodes in a descent tree is polynomial, and the total cost Cdesc of this step remains Cdesc = P−1

Fx
P−1
Fy
.

Overall complexity. To obtain the overall complexity for a given value of cp, we proceed as follows:
for each ∆ ≥ 1 and D ≥ 1, we look for the smallest value of d12 ≥ 1 for which the feasibility constraint
is satisfied for sieving and get the corresponding Csiev; then we look for the smallest value of d12 ≥ 1
such that the feasibility constraint is satisfied for the descent step and get the corresponding Cdesc. The
maximum complexity amongst the three costs gives a complexity for these values of ∆ and D. We then
vary ∆ and D and keep the lowest complexity. The result is shown in Figure 3.2, where the colors indicate
which step is the bottleneck for each range of cp values.

Figure 3.2: The complexity of FFS at the boundary case and the dominant phase as a function of cp,
obtained after fixing the error in [SS16a].

Remark 6. The plot of the complexity of FFS is intriguing. Indeed, it is far from smooth and moreover
presents patterns that can be explained.

• For small values of cp, i.e., cp / 0.4, the dominant cost of FFS alternates between sieving and
linear algebra. More surprisingly, there exist jumps between the two costs and a sudden increase in

57



the overall complexity due to the cost of sieving when looking at decreasing values of cp. We now
explain this phenomenon.

When the linear algebra cost is predominant, it naturally decreases when cp decreases. Indeed, recall
that this cost is simply given by Lpn (1/3, 2Dcp). Moreover, recall that for the sieving step there
exists a constraint on the degrees of A and B. The latter needs to be large enough to produce
enough relations. The discontinuities in the complexity and the sudden increases in the cost of
sieving correspond to the values of cp for which the degree d12 of A and B must be increased in
order for the constraint (inequality) to be satisfied. Increasing d12 thus increases the cost of sieving
which becomes predominant until the linear algebra takes over again due this time to the increase
of the value D. The parameter D is the upper bound on the degree of the polynomials in the factor
basis and if it is not increased when cp → 0, the algorithm fails to find any relations. Increasing D
increases the cost of linear algebra but decreases the costs of sieving and descent (this can be seen
with the formulas given above).

• Why is the descent suddenly more costly for 0.4 / cp / 0.6? This area corresponds to cp values for
which the optimal complexity is given when D = 1. The cost of linear algebra is thus simply 2cp. As
for comparing the costs of sieving and descent, we recall that the degree d12 is not necessarily set the
same for both phases and depends on the constraints given above. For this range of cp values, the
degree d12 is smaller for sieving and thus results in a lower cost. Hence, the dominant cost becomes
the one for the descent. Note that when cp > 0.6, both costs are dominated by 2cp, i.e., the linear
algebra.

3.2.2 The pinpointing technique
In [Jou13], Joux introduces a trick that allows to reduce the complexity of the sieving phase. We recall
the main idea in the particular case where we use pinpointing on the x-side and when d12 = 1.

In this case, the polynomial f1 is restricted to the particular form f1(x) = xn1 . For a pair of
polynomials A(x) = x + a, B(x) = bx + c, the polynomial Fx(x) becomes Fx(x) = φ(x, f1(x)) =
xn1+1 + axn1 + bx+ c. One can then perform the change of variable x 7→ tx for t in F∗p, and, making the
expression monic, one gets the following polynomial

Gt(x) = xn1+1 + at−1xn1 + bt−n1x+ ct−n1−1.

If Fx(x) is D-smooth, so is Gt(x), which corresponds to Fx(x) with the (A,B)-pair given by A(x) =
x+ at−1 and B(x) = (bt−n1x+ ct−n1−1).

To evaluate Csiev using the pinpointing technique, we first need to consider the cost of finding the
initial polynomial, i.e., an (A,B)-pair such that Fx(x) is D-smooth. Then, varying t ∈ F∗p allows to
produce p−1 pairs which, by construction, are also smooth on the x-side. We then need to check for each
of them if Fy(y) is also smooth. The total cost is thus P−1

Fx
+ p, and the number of relations obtained is

pPFy . Finally the cost per relation is P−1
Fy

+ (pPFxPFy )−1.
By symmetry, the only difference when doing pinpointing on the y-side is the first term which is

replaced by P−1
Fx

. Choosing the side that leads to the lowest complexity, and taking into account that we
have to produce pD relations leads to the overall complexity for the sieving step given in Equation (3.1)
which we recall here

Csiev = pD−1P−1
Fx
P−1
Fy

+ pD min(P−1
Fx
, P−1

Fy
).

3.2.3 Fixing a rounding bug in the FFS analysis of [SS16a]
Section VIII of [SS16a] contains an asymptotic analysis of FFS in the boundary case. Their analysis
contains a problem leading to slightly wrong complexities. This has now been corrected by the authors
in the last eprint version of their article, as we discussed this issue with them. The source of the mistake
is the fact that d1 and d2, the bound of the degrees of the polynomials A(x) and B(x) that are used to
define the sieving polynomial φ(x, y) = A(x)y+B(x), must be integers. Since in a whole range of values
for cp these degrees can be as small as a few units (and sometimes their optimal value is actually 1),
forgetting to round the values to integers can lead to significant differences.

58



More precisely, in the proof of Proposition 3 of page 2248, the optimal value of e∗ is rounded to an
integer. But then, ∆∗ which is the new name of d1 and d2 in this portion of the paper is taken to be
∆∗ = (e∗− 1)/2 which is an integer only if e∗ is odd, and there is no reason for this to be true. The same
problem occurs on page 2249, where a study similar to the one of Proposition 3 is performed.

One possibility would be to take d2 = d1 + 1 when the parity of e∗ is not the good one. But then the
degree of the Fy(y) polynomials is no longer n2d1 + 1, but max(n2d1 + 1, n2d2), so that asymptotically,
this degree can be approximated by max(d1, d2)n2. Therefore, unbalancing the degrees of d1 and d2 does
not solve the issues.

To give a better illustration of the problem, we follow the analysis of [SS16a] for the value cp = (1/6)1/3

which, according to this paper, yields the best overall complexity.
For this value of cp, the formulae leading to the lowest cost are the ones of Section VIII.B on page 2249,

with the parameter D = 1. The equations (37), (38), (39) lead to the following values:

e∗(1,des) = 2; ∆∗(1,des) = 3/2; e∗(1,rel) = 3; ∆∗(1,rel) = 1;

δ1 = max(0.9172 . . . , 1.1006 . . . , 1.1006 . . . ) = 1.1006 . . .

We see here clearly that the value of ∆∗(1,des) is not an integer, which contradicts the convention taken
on page 2247: Then ∆rel (resp. ∆des) gives the degrees of A(x) and B(x) for relation collection (resp.
descent).

Therefore, for cp = (1/6)1/3 we have to take ∆∗(1,des) = 2 instead of 3/2, which increases the overall
cost of the descent to 1.27 instead of 1.14.

With our new analysis as presented in Section 3.2, the value of cp for which we obtain the best overall
complexity is now cp = (2/81)1/3, where the cost is LQ(1/3, 4 (2/81)1/3) ≈ LQ(1/3, 1.16).

3.2.4 Improving the complexity of FFS in the composite case
We are able to lower the complexity of FFS when the extension degree n is composite. This case often
happens in pairings for efficiency reasons.

Let n = ηκ. This means we can rewrite our target field as Fpn = Fpηκ = Fp′η , where p′ = pκ. Note
that this would not work in the NFS context because p′ is no longer a prime. From p = LQ (1/3, cp), we
obtain p′ = LQ (1/3, κcp). Thus looking at the complexity of FFS in Fpn for some cp = α is equivalent
to looking at the complexity of FFS in Fp′η at some value cp′ = κα. This corresponds to a shift of the
complexity by a factor of κ.

More generally, assume n can be decomposed into a product of multiple factors. For each factor κ
of n, one can consider the target field Fp′r , where p′ = pκ and r = n/κ. This gives rise to a new
complexity curve Cκ, shifted from the original one by a factor of κ. One can then consider the final curve
C = minκ≥1 Cκ, that assumes that n has many small factors. This lowers the complexity of FFS for small
values of cp as can be seen in Figure 3.3.

Question 34. Morally, what does this imply?

When the degree D becomes too small to find all the relations required, instead of increasing it, one can
consider working with a small extension of Fp as a base field for FFS.

One of the most significant examples is when cp = (1/6) × (2/81)1/3 = 0.049. The FFS complexity
is LQ(1/3, 1.486) in this case, while if n is a multiple of 6, we can use p′ = p6, so that we end up at the
point where FFS has the lowest complexity, and we reach LQ(1/3, 1.165).

More generally, even when the characteristic is small, if n = ηκ is composite we can work with Fpκ
as a base field, and if pκ has the appropriate size we can have a complexity that is lower than the
LQ(1/3, (32/9)1/3) of the plain FFS in small characteristic. The optimal case is given for the value
κ = (2/81)1/3n1/3(logp n)2/3. This strategy is very similar to the extended Tower NFS technique where
we try to emulate the situation where the complexity of NFS is the best (see Chapter 4).

Now that we have given an analysis of the Function Field Sieve at the boundary case, we turn our
attention to the Number Field Sieve and its variants.

59



Figure 3.3: Assuming n has appropriate factors, the lowered complexity of FFS for small values of cp
when considering shifts. In this plot, we consider κ = 2, 6. We only plot points of the curves C2 and C6
which are lower than the original FFS curve.

3.3 Tools for the analysis of NFS and its variants
The main difficulty when evaluating the complexity of NFS is the amount of parameters that influence in
a non-trivial way the running time or even the termination of the algorithm. In this section we explain
our methodology to find the set of parameters leading to the fastest running time. We do not consider the
space complexity. Indeed, in all the variants of NFS under study, the memory requirement is dominated
by the space required to store the matrix of relations, which is equal (up to logarithmic factors) to the
square root of the running time to find a kernel vector in this matrix.

3.3.1 General methodology

Parameters and their constraints

As often done in an asymptotic complexity analysis, even if parameters are assumed to be integers,
they are considered as real numbers. This is a meaningful modelling as long as the numbers tend to
infinity since the rounding to the nearest integer will have a negligible effect. In some of the variants,
however, some integer parameters remain bounded. This is the case for instance of the (r, k) parameters
in MNFS-A, detailed in Section 3.5. We call continuous parameters the former, and discrete parameters
the latter.

The analysis will be repeated independently for all values of the discrete parameters, so that we now
concentrate on how to optimize the continuous parameters for a given choice of discrete parameters.
We call a set of parameters valid if the algorithm can be run and will finish with a high probability.
Many parameters are naturally constrained within a range of possible values in R. For instance, a
smoothness bound must be positive. In addition, one must consider another general constraint to ensure
the termination of the algorithm: the number of relations produced by the algorithm for a given choice of
parameters must be larger than the size of the factor basis. We will refer to this constraint as the Main
Constraint in the rest of the chapter.

This inequality can be turned into an equality with the following argument (similarly as in Section 3.2,
equality is up to asymptotically negligible factors). Assume a set of parameters gives a minimum running
time, and for these parameters the number of relations is strictly larger than the size of the factor basis.
Then, by reducing the bound on the coefficients of the polynomials φ used for sieving, one can reduce the
cost of the sieving phase, while the costs of linear algebra and individual logarithm steps stay the same.
Therefore, one can construct a new set of parameters with a smaller running time.

The costs of the three phases

Let Csiev, Clinalg and Cdesc be the costs of the three main phases of NFS. The overall cost of computing a
discrete logarithm is then the sum of these three quantities. Up to a constant factor in the running time,

60



the optimal cost can be deduced by minimizing the maximum of these three costs instead of their sum.
Given the form of the formulas in terms of the parameters, this will be much easier to handle.

A natural question that arises is whether, at the optimum point, one cost “obviously” dominates
the others or on the contrary is negligible. The two following statements were previously given without
justification and we correct this issue here. First, the best running time is obtained for parameters where
the linear algebra and the sieving steps take a similar time. We explain why there is no reason to believe
this assumption is necessarily true. Secondly, the cost of the individual logarithm step is negligible. We
justify this in this setting with a theoretical reason.

Equating the cost of sieving and linear algebra. In the most simple variant of NFS for solving
the discrete logarithm in a prime field using two number fields, the best complexity is indeed obtained
at a point where linear algebra and sieving have the same cost. However, we would like to emphasize
that this is not the result of an “obvious” argument. Let us assume that the linear algebra is performed
with an algorithm with complexity O(Nω), where ω is a constant. The matrix being sparse, the only
lower bound we have on ω is 1, while the best known methods [Cop94] give ω = 2. By re-analyzing
the complexity of NFS for various values of ω, we observe that the optimal cost is obtained at a point
where the linear algebra and the sieving have similar costs only when ω ≥ 2. Were there to be a faster
algorithm for sparse linear algebra with a value of ω strictly less than 2, the complexity obtained with
Csiev = Clinalg would not be optimal. Therefore, any “obvious” argument for equating those costs should
take into account that the current best exponent for sparse linear algebra is 2.

Negligible cost of individual logarithm step. We will argue that in NFS and any of its variants,
the cost of individual logarithms is always negligible compared to the cost of sieving, thus simplifying the
analysis.

As explained previously, the individual logarithm phase consists of two steps: a smoothing step and
a descent by special-q. We refer to [FGHT17, Appendix A] where a summary of several variants is given,
together with the corresponding complexities. The smoothing part is somewhat independent and has a
complexity in LQ(1/3, 1.23), that is lower than all the other complexities. Note however that [FGHT17]
does not cover the case where a discrete logarithm in an extension field is sought. The adaptation can
be found in [BP14, Appendix A] and the complexity remains the same. For the special-q descent step,
the analysis of [FGHT17] does not need to be adapted, since all the computations take place at the level
of number fields. Using sieving with large degree polynomials, it is shown that all the operations except
for the ones at the leaves of the descent trees take a negligible time LQ(1/3, o(1)). Finally the operations
executed at the leaves of the tree are very similar to the ones performed during sieving to find a single
relation. Therefore they also take a negligible time compared to the entire sieving step that must collect
an LQ(1/3) sub-exponential quantity of relations, while we only require a polynomial quantity for the
descent. As a consequence, in the context of NFS and its variants, the individual logarithm phase takes
a much smaller time than the sieving phase.

Overall strategy for optimizing the complexity

First we fix values for the discrete parameters. Since these values are bounded in our model, there are
only finitely many choices. We then apply the following recursive strategy where all the local minima of
the parameters encountered are compared in the end and the smallest is returned. The strategy executes
the following two steps. First, in the subvariety of valid parameters satisfying the Main Constraint, search
for local minima of the cost assuming Csiev = Clinalg. Then, recurse on each plausible boundary of the
subvariety of parameters.

In order for our analysis to remain as general as possible, we have also considered the case where
the costs of sieving and linear algebra are not equal. We then look for local minima for Csiev and see if
this results in a lower complexity. We do not detail this case since this situation has not occurred in our
analyses, but we insist on the necessity to perform these checks.

We emphasize that we have to first look for minima in the interior of the space of valid parameters and
then recurse on its boundaries. This is imposed by the technique we use to find local minima. Indeed, we
assume that all the quantities considered are regular enough to use Lagrange multipliers. However, this
technique cannot be used to find a minimum that would lie on a boundary. This is the case for example
of STNFS as explained in Section 3.5.3.

61



In general, only few cases are to be considered. For instance, except for a few polynomial selection
methods, there are no discrete parameters. Also, boundary cases are often non-plausible, for example,
when the factor base bound tends to zero or infinity. Some cases are also equivalent to other variants
of NFS, for instance when the number of number fields in MNFS goes to zero, the boundary case is the
plain NFS.

Notations. In the analysis of NFS and its variants, parameters that grow to infinity with the size Q of
the finite field must be chosen with the appropriate form to guarantee an overall LQ(1/3) complexity. We
summarize in Table 3.1 the notations used for these parameters, along with their asymptotic expressions.
For convenience, in order to have all the notations at the same place, we include parameters that will be
introduced later in this chapter.

Notation Asympt. expression Definition
General parameters
p LQ (1/3, cp) Characteristic of finite field FQ, where Q = pn

n 1
cp

(
logQ

log logQ

)2/3

Exponent of finite field FQ, where Q = pn

B LQ (1/3, cB) Smoothness bound

t ct
cp

(
logQ

log logQ

)1/3

Degree of the sieving polynomials φ
A (logQ)cAcp Bound on coefficients of φ. Note At = LQ (1/3, cAct)
P LQ (1/3, pr) Probability that φ leads to a relation
MNFS parameters
V LQ (1/3, cV ) Number of number fields in MNFS
B′ LQ (1/3, cB′) Second smoothness bound for asymmetric MNFS
P1 LQ (1/3, pr1) Probability of smoothness in the first number field
P2 LQ (1/3, pr2) Probability of smoothness in any other number field
Other parameters

d δ
(

logQ
log logQ

)2/3

Degree of polynomial in the case of JLSV2

η cη

(
logQ

log logQ

)1/3

Factor of n in the case of (ex)TNFS; deg h = η

κ cκ

(
logQ

log logQ

)1/3

Other factor of n in the case of (ex)TNFS; cκ = 1
cpcη

Table 3.1: Notations and expressions for most of the quantities involved in the analysis of NFS and its
variants.

3.3.2 Smoothness probability
During the sieving phase, we search for B-smooth norms, i.e., norms of ideals that would decompose into
prime ideals with norm smaller than B. The set of prime ideals with norm smaller than B is known as
the factor basis. A key assumption in the analysis is that the probability of a norm being smooth is the
same as that of a random integer of the same size. This allows us to apply the theorem by Canfield-
Erdős-Pomerance [? ]. While the general theorem was given in Chapter 1, we use the following specific
version stated using the LQ-notation:

Corollary 3. Let (α1, α2, c1, c2) be four real numbers such that 1 > α1 > α2 > 0 and c1, c2 > 0. Then
the probability that a random positive integer below LQ(α1, c1) splits into primes less than LQ(α2, c2) is
given by

LQ
(
α1 − α2, (α1 − α2)c1c

−1
2

)−1
.

The norms are estimated based on their expressions as resultants. In the classical (non-tower) version
of NFS, for a given candidate φ, the norm Ni in the i-th number field given by fi takes the form
Ni(φ) = cRes(fi, φ), where c is a constant coming from the leading coefficient of fi that can be considered
smooth (possibly by including its large prime factors in the factor basis).

62



The usual definition of the resultant is given as the determinant of the Sylvester matrix, i.e.,

Res(fi, φ) =
∑

σ∈Sdeg fi+deg φ

ε(σ)

deg fi+deg φ∏
i=1

aiσ(i),

with ε(σ) the signature of the permutation and ai,j the coefficients of the Sylvester matrix. Since
|Sdeg fi+deg φ| = (deg fi + deg φ)!, a naive bound on the resultant is

|Res(fi, φ)| ≤ (deg fi + deg φ)!||fi||deg φ
∞ ||φ||deg fi

∞

In our context, we use another bound that follows from Hadamard’s inequality (see [BL10, Theorem
7]):

|Res(fi, φ)| ≤ (d+ 1)(t−1)/2td/2||fi||(t−1)
∞ ||φ||d∞,

where d = deg fi and t− 1 = deg φ. Note that in our setting, d must be larger than n which is roughly in
(logQ)2/3, while t is in (logQ)1/3, so that the factor (d + 1)(t−1)/2 will be negligible but the factor td/2
will not.

A note on Kalkbrener’s corollary. Recent papers including [JP14b, BGGM15, SS16c, SS16b] have
mentioned a result from Kalkbrener [Kal97] to upper bound the value of the combinatoric term (deg fi +
deg φ)!. Recall that this term corresponds to the number of permutations which gives a non-zero product
in the definition of the resultant. In [Kal97], Theorem 2 counts the number of monomials in the Sylvester
matrix. However, two permutations can give the same monomial, and thus the number of permutations
is not bounded by the number of monomials. We emphasize that this result cannot be used this way; this
error leads to wrong (and underestimated) complexities. Indeed combinatorial terms cannot be neglected
at the boundary case.

When analyzing tower variants (see [KB16, Lemma 1] and [SS19, Equation 5]), the ring R is Z[ι]/h(ι),
and in all cases, the optimal value for the degree of φ(X) is 1 (i.e. t = 2, in the general setting). A
polynomial φ is therefore of the form φ(X) = a(ι) + b(ι)X, where a and b are univariate polynomials
over Z of degree less than deg h, with coefficients bounded in absolute value by A. Up to a constant
factor which can be assumed to be smooth without loss of generality, the norm Ni(φ) in the field defined
by fi(X) is then given by Resι

(
ResX

(
a(ι) + b(ι)X, fi(X)

)
, h(ι)

)
, and this can be bounded in absolute

value by
|Ni(φ)| ≤ A(deg h)(deg fi)||fi||deg h

∞ ||h||deg fi((deg h)−1)
∞ C(deg h,deg fi),

the combinatorial contribution C being C(x, y) = (x+ 1)(3y+1)x/2(y + 1)3x/2.
In the case of TNFS where n is prime, the degree of h is equal to n, thus both factors of the

combinatorial contribution are non-negligible. On the other hand, when n = ηκ is composite with
appropriate factor sizes, one can use exTNFS and take deg h = η and deg f ≥ κ, in such a way that only
the first factor of C will contribute in a non-negligible way to the size of the norm.

3.3.3 Methodology for the complexity analysis of NFS
During sieving, we explore At candidates, for which a smoothness test is performed. A single smoothness
test with ECM has a cost that is non-polynomial. It is sub-exponential in the smoothness bound, meaning
in LB(1/2). By the properties of the LQ-notation, more precisely the fact that LLQ(α)(β) = LQ(αβ),
this gives an LQ(1/6) complexity and therefore contributes only in the o(1) in the final complexity. We
therefore count it as a unit cost in our analysis. In the plain NFS, the cost of sieving is therefore At.
In the asymmetric MNFS, we should in principle add the cost of testing the smoothness of the V − 1
remaining norms when the first one is smooth. With the notations of Table 3.1, the sieving cost is
therefore At(1 +P1V ). In what follows, we will assume that P1V � 1, i.e. pr1 + cV < 0 and check at the
end that this hypothesis is valid. As for the linear algebra, the cost is quadratic in the size of the factor
basis. According to the prime number theorem, the number of prime ideals of norm bounded by B is
proportional to B up to a logarithmic factor. In the asymmetric MNFS setting, the cost is (B + V B′)2,
and in general, we balance the two terms and set B = V B′. Therefore, in the main case where we assume

63



equality between sieving and linear algebra, for both the plain NFS and the asymmetric MNFS variant
we get At = B2.

The Main Constraint also requires to have as many relations as the size of the factor bases. This
translates into the equation AtP = B, where P is the probability of finding a relation, which is equal to
P1P2V in the MNFS case. Combining this with the first constraint simplifies to BP = 1, or, in terms of
exponents in the LQ-notation:

pr + cB = 0, (3.2)

where pr = pr1 + pr2 + cV in the case of MNFS.
From the characteristics of the polynomials outputted by the polynomial selection, one can use the

formulae of Section 3.3.2 to express pr in terms of the parameters cB , ct, and also cV in the MNFS case.
Note that we use the equation At = B2 to rewrite cA as cA = 2cB/ct.

It remains to find a minimum for the cost of the algorithm under the constraint given by Equation (3.2).
To do so, we use Lagrange multipliers. Let c = pr + cB be the constraint seen as a function of the
continuous parameters. The Lagrangian function is given by L(parameters, λ) = 2cB + λc, where λ is an
additional non-zero variable. At a local minimum for the cost, all the partial derivatives of L are zero,
and this gives a system of equations with as many equations as indeterminates (not counting cp which
is seen as a fixed parameter). Since all the equations are polynomials, it is then possible to use Gröbner
basis techniques to express the minimum complexity as a function of cp.

More precisely, in the case of the asymmetric MNFS where the variables are cB , ct and cV , the system
of equations is 

∂L
∂cB

= 2 + λ ∂c
∂cB

= 0
∂L
∂ct

= λ ∂c
∂ct

= 0
∂L
∂cV

= λ ∂c
∂cV

= 0

pr1 + pr2 + cV + cB = 0 ,

where the first equation plays no role in the resolution, but ensures that λ is non-zero, thus allowing to
remove the λ in the second and third equation. This becomes an even simpler system in the case of the
plain NFS, where the parameter cV is no longer present, thus leading to the system{

∂c
∂ct

= 0

pr + cB = 0 .

In the case where the expressions depend on discrete parameters, we can keep them in the formulae
(without computing partial derivatives with respect to them, which would not make sense) and compute
a parametrized Gröbner basis. If this leads to a system for which the Gröbner basis computation is too
hard, then we can instantiate some or all the discrete parameters and then solve the system for each
choice.

The cases not covered by the above setting, including the cases where we do not assume equality
between sieving and linear algebra are handled similarly.

3.4 Polynomial selections
The asymptotic complexity of all the algorithms which were introduced in Chapter 1 depends on the
characteristics of the polynomials outputted by the different polynomial selection methods. We briefly
summarize in this section these various existing polynomial selection methods. We distinguish the cases
when n is composite and when p is of a special form, which leads to considering different algorithms. The
parameters for all the polynomial selections we are going to examine are summarized in Table 3.2.

3.4.1 Polynomial selections for NFS and MNFS
We first list the methods where no particular considerations are made on the extension degree n or the
characteristic p.
JLSV0. This is the simplest polynomial method there exists. We consider a polynomial f1 of degree
n irreducible mod p such that the coefficients of f1 are in O(1). We construct f2 = f1 + p and thus
coefficients of f2 are in O(p) and the degree of f2 is also n. Then trivially we have the condition that

64



f2|f1 mod p as required for the algorithms to work.

JLSV1. The JLSV1 method was introduced in [JLSV06]. We start by considering two polynomials h0

and h1 with small coefficients and such that deg h0 = n and deg h1 < n. Consider some value m >
√
p

and let (u, v) be such that m ≡ u
v (mod p). Then, define f1 = h0 + mh1. The polynomial f1 is then

of degree n and its coefficients are of size O(
√
p). Secondly, define f2 = vh0 + uh1. Similarly, the

degree of f2 is n and its coefficients are also of size O(
√
p). The previous steps are repeated until f1

and f2 are irreducible mod p. Both polynomials f1, f2 share a common factor mod p. Note that the
degree of the polynomials outputted are the same as those of JLSV0. However, the size of coefficients
are balanced as opposed to JLSV0. This difference does not affect the overall complexity of the algorithm.

Polynomial selection algorithms such as JLSV2, GJL and A use lattices to output the second polyno-
mial, the idea being that in order to produce a polynomial with small coefficients, the latter are chosen
to be the coefficients of a short vector in a reduced lattice basis. We introduce the following lattice basis
construction

Mk(p, f) =

(
P 0

F 1

)
where P is a diagonal n×n matrix with entries p, F is a k−n+ 1-dimensional matrix whose rows corre-
sponds to the coefficients of the polynomial f shifted by one index at each row and 1 simply corresponds
to a diagonal matrix with 1 as entries.

JLSV2. This polynomial selection is presented in [JLSV06]. It constructs two irreducible polynomials f1

and f2 with integer coefficients such that f1 is a degree n polynomial, irreducible modulo p, and f2 is
divisible by f1 modulo p. This construction predates the Generalized Joux-Lercier method [BGGM15],
one of the current polynomial selections used for large characteristic finite fields.

First we choose a monic irreducible polynomial h of degree n with small integer coefficients, say
in O(1). We select W an integer such that f1(x) = h(x + W ) is irreducible modulo p. Since h is of
degree n and monic, f1 is also of degree n and monic. Besides, the largest coefficient of f1 is O(Wn). Let

f1(x) = s0 + s1x+ · · ·+ sn−1x
n−1 + xn.

We look for a polynomial f2 of degree d for some d > n, that is a multiple of f1 modulo p and whose
coefficients are smaller than Wn, i.e., smaller than those of f1. To do so, we consider the lattice of the
polynomials of degree at most d that are divisible by f1 modulo p. This is a lattice of dimension d+ 1 for
which a basis is given by the rows of the matrixMd(p, f1). The first n rows correspond to the polynomials
p, px, · · · , pxn−1 and the last d − n + 1 rows correspond to f1, xf1, · · ·xd−nf1. We can LLL-reduce this
basis and expect to find vectors with small coefficients: We let f2 be the polynomial which coefficients
are given by the first vector in the reduced basis. Using LLL heuristic approximation factor, we expect
that if v1 is the shortest vector in the lattice, then ||v1|| ≈ (1.02)dimM det(M)1/ dimM , where ||.|| denotes
the Euclidean norm. In our case, the determinant of M is pn, and so ||f2|| ≈ (1.02)d+1pn/(d+1).

Note that the value (1.02)d+1 is negligible here, so that, from a complexity analysis perspective, there
is no need to use a better lattice reduction than LLL. Since ||f1|| > Wn, to ensure that f2 is different
from f1, it is sufficient to choose W such that ||f2|| ≤ Wn. Besides, for two given degrees we know that
the lower the coefficients of the polynomials are, the faster NFS is. So to further optimize the asymptotic
complexity we choose the smallest possible W , namely W ≈ p1/(d+1). Finally, this polynomial selection
outputs the polynomials f1 and f2. By construction, f2 is divisible by f1 mod p. The best value for d
will be determined later on.

GJL. The Generalized Joux-Lercier (GJL) method is an extension to the non-prime fields of the method
presented in 2003 by Joux and Lercier in [JL03]. It was proposed by Barbulescu, Gaudry, Guillevic and
Morain in [BGGM15, Paragraph 6.2], and uses lattice reduction to build polynomials with small coeffi-
cients. We briefly recall the steps of this polynomial selection. First select an irreducible polynomial f1

in Fp[X] of degree d + 1 > n with coefficients in O(log pn) and such that it has an irreducible monic

65



factor I of degree n modulo p. We can write I(x) = xn +
∑n−1
i=0 Iix

i. The polynomial selection needs to
output a second polynomial f2 which shares the same irreducible factor modulo p. To do so, we build
the lattice of dimension (d+ 1)× (d+ 1) whose basis is given by Md(p, I − xn).

Similarly to the JLSV2 construction, the polynomial f2 is defined as a linear combination of polynomi-
als of the form IXk and pXk. More precisely, its coefficients are the coefficients of the first vector in the
LLL reduced basis of M . This allows to have smaller coefficients. The determinant of this lattice is pn.
Hence, running the LLL algorithm on M gives a polynomial of degree at most d that has coefficients of
size at most pn/d+1. Finally, we obtain two polynomials f1 and f2 that share a common degree n factor
over Fp[X].

Conjugation. In [BGGM15], in addition to GJL, the authors propose another new polynomial selection
method known as Conjugation. It uses a continued fraction method like JLSV1 and the existence of
some square roots in Fp. We first choose a quadratic monic polynomial φ with coefficients of size O(log p)
which is irreducible over Z and has a root m in Fp. We then consider two polynomials h0 and h1 with
small coefficients and such that deg h0 = n and deg h1 < n. Let (u, v) be such that m ≡ u/v mod p.
Then, define f2 = vh0 +uh1. The polynomial f2 is then of degree n and its coefficients are of size O(

√
p).

Secondly, define f1 = Resy(φ(y), h0(x) + yh1(x)). Then, the degree of f1 is 2n and its coefficients are of
size O(log p). Both polynomials f1, f2 share a common factor mod p.

Algorithm A. We recall Algorithm A as given in [SS16c] in Algorithm 6 as this variant leads to the
best complexity at the boundary case. We refer to [SS16c] for more details about it. This algorithm
also uses lattices to output the second polynomial and introduces two new parameters, d̂ and r, such
that r ≥ n

d̂
:= k. The parameters r and k are discrete in the complexity analyses. Note that the

parameter d̂ used in this polynomial selection is also discrete whereas the polynomial degree denoted d
used in JLSV2 and GJL is continuous (we specify this here due to the very similar notation).

Algorithm 6 Algorithm A
Input: p, n, d̂, a factor of n and r ≥ n/d̂
Output: f1(x), f2(x) and I(x)

Let k = n/d̂.
1: repeat

Randomly choose a monic irreducible polynomial A1(x) with the following properties:
degA1(x) = r + 1, A1(x) is irreducible over the integers, A1(x) has coefficients of size O(log(p))
and modulo p, A1(x) has an irreducible factor A2(x) of degree k.

Randomly choose monic polynomials C0(x) and C1(x) with small coefficients such that
degC0(x) = d̂ and degC1(x) < d̂.

Define
f1(x) = Resy(A1(y), C0(x) + yC1(x))

I(x) = Resy(A2(y), C0(x) + yC1(x)) (mod p)

J(x) = LLL(Mr(p,A2))

f2(x) = Resy(J(y), C0(x) + yC1(x))

2: until f1(x) and f2(x) are irreducible over Z and I(x) is irreducible over Fp
return f(x), g(x) and I(x).

3.4.2 Polynomial selections for exTNFS and MexTNFS
We now look at polynomial selections with composite extension degree n = ηκ. The most general
algorithms are the algorithms B, C and D presented in [SS16b, SS19] that extend algorithm A to the
composite case. Thus, the construction of the polynomials f1 and f2 follow very similar steps as the ones
in algorithm A. We merely point out the main differences with algorithm A. These algorithms require

66



the additional condition gcd(η, κ) = 1. Similarly as for algorithm A, they introduce two new parameters:
d̂ and r such that r ≥ κ/d̂ := k.

Algorithm B. This algorithm is identical to algorithm A adapted to the composite setup where n = ηκ.
Note that if η = 1 and κ = n, we recover algorithm A. We recall it in Algorithm 7 as it leads to the best
complexity at this boundary case for composite extension degrees.

Algorithm 7 Algorithm B
Input: p, n = κη, d̂, a factor of κ and r ≥ κ/d̂
Output: f1(x), f2(x) and I(x)

Let k = κ/d̂.
1: repeat

Randomly choose a monic irreducible polynomial A1(x) with the following properties:
degA1(x) = r + 1, A1(x) is irreducible over the integers, A1(x) has coefficients of size O(log(p))
and modulo p, A1(x) has an irreducible factor A2(x) of degree k.

Randomly choose monic polynomials C0(x) and C1(x) with small coefficients such that
degC0(x) = d̂ and degC1(x) < d̂.

Define . Notations are as in [SS16c]

f1(x) = Resy(A1(y), C0(x) + yC1(x))

I(x) = Resy(A2(y), C0(x) + yC1(x)) (mod p)

J(x) = LLL(Mr(p,A2))

f2(x) = Resy(J(y), C0(x) + yC1(x))

2: until f1(x) and f2(x) are irreducible over Z and I(x) is irreducible over Fp
return f1(x), f2(x) and I(x).

Algorithms C and D. The polynomial selection C is another extension of A to the setup of exTNFS.
It introduces a new variable λ ∈ [1, η] that plays a crucial role in controlling the size of the coefficients
of f2. However, in our case, when analysing the complexity of M(ex)TNFS-C one realizes that the lowest
complexity is achieved when λ = 1 which brings us back to the analysis of B. As for algorithm D, this is
a variant that allows to replace the condition gcd(η, κ) = 1 by the weaker condition gcd(η, k) = 1. Since
the outputted polynomials share again the same properties as algorithm B, the complexity analysis is
identical. Therefore, we will not consider C or D in the rest of the chapter.

3.4.3 Polynomial selections for SNFS and STNFS
For SNFS and STNFS, the prime p is given as the evaluation of a polynomial P of some degree λ and
with small coefficients. In particular, we can write p = P (u), for u ≈ p1/λ. Note that the degree λ
is a fixed parameter which does not depend on p. We summarize the construction of the polynomials
f1 and f2 given in [JP14b]. The first polynomial f1 is defined as an irreducible polynomial over Fp of
degree n and can be written as f1(x) = xn + R(x) − u, where R is a polynomial of small degree and
coefficients taken in the set {−1, 0, 1}. The polynomial R does not depend on P so ||f1||∞ = u, and from
p = P (u) we get ||f1||∞ = p1/λ. The polynomial f2 is chosen to be f2(x) = P (f1(x) + u). This implies
f2(x) (mod f1(x)) = p, and thus f2(x) is a multiple of f1(x) modulo p. For STNFS it suffices to replace
n by κ.

3.5 Complexity analyses of (M)(ex)(T)NFS
Following the method explained in Section 3.3, we have computed the complexities of the algorithms
presented in Chapter 1, Section 1.3 with the polynomial selections given in Section 3.4. We report the
norms and the complexities in Table 3.3 and Figure 3.6. Since each norm has the form LQ (2/3, c),
and each complexity has the form LQ(1/3, c), we only report the values of c in the table. We illustrate

67



Polynomial NFS MNFS
selection deg f1 deg f2 ||f1||∞ ||f2||∞ deg f1 deg f2 ||f1||∞ ||f2||∞
JLSV0 n n O(1) O(p) – – – –
JLSV1 n n O(

√
p) O(

√
p) n n O(

√
p) O(

√
V
√
p)

JLSV2 n d > n O(pn/(d+1)) O(pn/(d+1)) n d > n O(pn/(d+1)) O(
√
V pn/(d+1))

GJL d+ 1 > n d O(1) O(pn/(d+1)) d+ 1 > n d O(1) O(
√
V pn/(d+1))

Conjugation 2n n O(log p) O(
√
p) 2n n O(log p) O(

√
V
√
p)

A d(r + 1) dr O(log p) O(pn/d(r+1)) d(r + 1) dr O(log p) O(
√
V pn/d(r+1))

Polynomial exTNFS MexTNFS
selection deg f1 deg f2 ||f1||∞ ||f2||∞ deg f1 deg f2 ||f1||∞ ||f2||∞
JLSV2 κ d > κ O(pκ/(d+1)) O(pκ/(d+1)) κ d > κ O(pκ/(d+1)) O(

√
V pκ/(d+1))

B d(r + 1) dr O(log p) O(pk/(r+1)) d(r + 1) dr O(log p) O(
√
V pk/(r+1))

Polynomial selection deg f1 deg f2 ||f1||∞ ||f2||∞
SNFS n nλ p1/λ O((log n)λ)
STNFS κ κλ p1/λ O

(
(log κ)λ

)
Table 3.2: Parameters of the polynomials f1, f2 outputted by various polynomial selection methods for
(M)NFS in the first table, (M)exTNFS in the second table and S(T)NFS in the third table.

our methodology by giving details of the computation of the complexity analysis of the best performing
variants.

3.5.1 (M)NFS
In the case of (M)NFS, the best complexity is achieved by the MNFS asymmetric variant using the poly-
nomial selection A and when equating the cost of sieving and linear algebra. The continuous parameters
to consider in this case are B, A, t, V , and the discrete parameters are r and k.

The norms of the polynomials outputted by the polynomial selection A are bounded by

|N1| < td̂(r+1)/2(d̂(r + 1))t(log p)tAd̂(r+1),

and
|N2| < td̂r/2(d̂r)tQt/d̂(r+1)

√
V
t
Ad̂r.

Using Corollary 3, we compute the probabilities of smoothness for both norms. The constants in the LQ
notation for these probabilities are given by pr1 = −1

3cB

(
r+1
6kcp

+ (r+1)cA
k

)
, and pr2 = −1

3(cB−cV )

(
r

6kcp
+ rcA

k +

kct
r+1 + ctcV

2cp

)
. Using the condition P = 1/B allows us to obtain a non-linear equation in the various

parameters considered given by pr1 + pr2 + cV + cB = 0.
Recall that the overall complexity is LQ(1/3, 2cB). In order to minimize 2cB under the non-linear

constraint given above, we use Lagrange multipliers and solve the system exhibited in Section 3.3 with
Gröbner basis. This allows us to obtain an equation of degree 15 in cB , degree 9 in cp, and degrees 10
and 8 in r and k given in Figure 3.4. Recall that r and k are discrete values.

One can loop over the possible values of r, k and keep the values which give the smallest complexity.
When cp ≥ 1.5, the optimal set of parameters is given by (r, k) = (1, 1). When 1.2 ≤ cp ≤ 1.4, the values
of (r, k) need to be increased to find a valid complexity. For cp ≤ 1.1, no values of (r, k) allows us to find
a positive root for cV , thus there is no valid parameters with this method.

The last step of our strategy consists in recursing on each plausible boundary of the subvariety of
parameters. This case is already covered by the previous steps. Indeed, the only parameter where it makes
sense to consider the boundary is V , and when the latter goes to zero, this means we are considering
NFS again.

As a sanity check, one can look at what happens when the complexity approaches the medium
characteristic case.

68



90699264c15
B c

7
pr

6k6 − 362797056c13
B c

9
pr

4k8 + 423263232c15
B c

7
pr

5k6 − 967458816c13
B c

9
pr

3k8+
786060288c15

B c
7
pr

4k6 − 846526464c13
B c

9
pr

2k8 − 43670016c13
B c

6
pr

7k5 + 725594112c15
B c

7
pr

3k6−
184757760c12

B c
7
pr

6k6 + 114213888c11
B c

8
pr

5k7 − 241864704c13
B c

9
prk

8 + 618098688c10
B c

9
pr

4k8−
230107392c13

B c
6
pr

6k5 + 332563968c15
B c

7
pr

2k6 − 765904896c12
B c

7
pr

5k6 + 369515520c11
B c

8
pr

4k7+
1303382016c10

B c
9
pr

3k8 − 498845952c13
B c

6
pr

5k5 + 60466176c15
B c

7
prk

6 − 1242915840c12
B c

7
pr

4k6+
429981696c11

B c
8
pr

3k7 + 846526464c10
B c

9
pr

2k8 + 1337408c11
B c

5
pr

8k4 − 566030592c13
B c

6
pr

4k5+
30233088c10

B c
6
pr

7k5 − 977536512c12
B c

7
pr

3k6 + 16236288c9Bc
7
pr

6k6 + 201553920c11
B c

8
pr

2k7+
7838208c8Bc

8
pr

5k7 + 147806208c10
B c

9
prk

8 + 10077696c7Bc
9
pr

4k8 + 63452160c11
B c

5
pr

7k4−
349360128c13

B c
6
pr

3k5 + 140714496c10
B c

6
pr

6k5 − 362797056c12
B c

7
pr

2k6 + 66624768c9Bc
7
pr

5k6+
20155392c11

B c
8
prk

7 + 41430528c8Bc
8
pr

4k7 − 13436928c10
B c

9
pk

8 + 40310784c7Bc
9
pr

3k8+
148599360c11

B c
5
pr

6k4 − 105815808c13
B c

6
pr

2k5 + 261180288c10
B c

6
pr

5k5 − 43670016c12
B c

7
prk

6+
103389696c9Bc

7
pr

4k6 − 6718464c11
B c

8
pk

7 + 85100544c8Bc
8
pr

3k7 + 60466176c7Bc
9
pr

2k8+
82944c9Bc

4
pr

9k3 + 186577344c11
B c

5
pr

5k4 + 492480c8Bc
5
pr

8k4 − 8398080c13
B c

6
prk

5+
237852288c10

B c
6
pr

4k5 + 720576c7Bc
6
pr

7k5 + 3359232c12
B c

7
pk

6 + 71290368c9Bc
7
pr

3k6+
311040c6Bc

7
pr

6k6 + 85100544c8Bc
8
pr

2k7 + 40310784c7Bc
9
prk

8 + 870912c9Bc
4
pr

8k3+
132013152c11

B c
5
pr

4k4 + 3955392c8Bc
5
pr

7k4 + 1679616c13
B c

6
pk

5 + 97417728c10
B c

6
pr

3k5+
4950720c7Bc

6
pr

6k5 + 15863040c9Bc
7
pr

2k6 + 1897344c6Bc
7
pr

5k6 + 41430528c8Bc
8
prk

7+
10077696c7Bc

9
pk

8 + 3710448c9Bc
4
pr

7k3 + 48335616c11
B c

5
pr

3k4 + 13618368c8Bc
5
pr

6k4+
1119744c10

B c
6
pr

2k5 + 14530752c7Bc
6
pr

5k5 − 4292352c9Bc
7
prk

6 + 4821120c6Bc
7
pr

4k6+
7838208c8Bc

8
pk

7 + 342c7Bc
3
pr

10k2 + 8715600c9Bc
4
pr

6k3 + 864c6Bc
4
pr

9k3 + 4758912c11
B c

5
pr

2k4+
26326944c8Bc

5
pr

5k4 + 648c5Bc
5
pr

8k4 − 11850624c10
B c

6
prk

5 + 23602752c7Bc
6
pr

4k5+
288c4Bc

6
pr

7k5 − 1866240c9Bc
7
pk

6 + 6531840c6Bc
7
pr

3k6 + 3204c7Bc
3
pr

9k2+
12650256c9Bc

4
pr

5k3 + 8352c6Bc
4
pr

8k3 − 2192832c11
B c

5
prk

4 + 31313952c8Bc
5
pr

4k4+
6192c5Bc

5
pr

7k4 − 2706048c10
B c

6
pk

5 + 22897728c7Bc
6
pr

3k5 + 2016c4Bc
6
pr

6k5+
4976640c6Bc

7
pr

2k6 + 14112c7Bc
3
pr

8k2 + 11875248c9Bc
4
pr

4k3 + 35928c6Bc
4
pr

7k3−
536544c11

B c
5
pk

4 + 23493888c8Bc
5
pr

3k4 + 25128c5Bc
5
pr

6k4 + 13255488c7Bc
6
pr

2k5+
6048c4Bc

6
pr

5k5 + 2021760c6Bc
7
prk

6 + 2c5Bc
2
pr

11k + 37980c7Bc
3
pr

7k2 + 10c4Bc
3
pr

10k2+
7248528c9Bc

4
pr

3k3 + 89928c6Bc
4
pr

6k3 + 8c3Bc
4
pr

9k3 + 10865664c8Bc
5
pr

2k4+
57024c5Bc

5
pr

5k4 + 4235328c7Bc
6
prk

5 + 10080c4Bc
6
pr

4k5 + 342144c6Bc
7
pk

6 + 25c5Bc
2
pr

10k+
68184c7Bc

3
pr

6k2 + 100c4Bc
3
pr

9k2 + 2782512c9Bc
4
pr

2k3 + 143928c6Bc
4
pr

5k3 + 72c3Bc
4
pr

8k3+
2833056c8Bc

5
prk

4 + 79560c5Bc
5
pr

4k4 + 575424c7Bc
6
pk

5 + 10080c4Bc
6
pr

3k5 + 136c5Bc
2
pr

9k+
84276c7Bc

3
pr

5k2 + 448c4Bc
3
pr

8k2 + 610416c9Bc
4
prk

3 + 152424c6Bc
4
pr

4k3 + 288c3Bc
4
pr

7k3+
318816c8Bc

5
pk

4 + 70128c5Bc
5
pr

3k4 + 6048c4Bc
6
pr

2k5 + 430c5Bc
2
pr

8k + 71964c7Bc
3
pr

4k2+
1184c4Bc

3
pr

7k2 + 58320c9Bc
4
pk

3 + 106632c6Bc
4
pr

3k3 + 672c3Bc
4
pr

6k3 + 38232c5Bc
5
pr

2k4+
2016c4Bc

6
prk

5 + 884c5Bc
2
pr

7k + 41652c7Bc
3
pr

3k2 + 2044c4Bc
3
pr

6k2 + 47448c6Bc
4
pr

2k3+
1008c3Bc

4
pr

5k3 + 11808c5Bc
5
prk

4 + 288c4Bc
6
pk

5 + 1246c5Bc
2
pr

6k + 15570c7Bc
3
pr

2k2+
2408c4Bc

3
pr

5k2 + 12168c6Bc
4
prk

3 + 1008c3Bc
4
pr

4k3 + 1584c5Bc
5
pk

4 + 1232c5Bc
2
pr

5k+
3384c7Bc

3
prk

2 + 1960c4Bc
3
pr

4k2 + 1368c6Bc
4
pk

3 + 672c3Bc
4
pr

3k3 + 856c5Bc
2
pr

4k+
324c7Bc

3
pk

2 + 1088c4Bc
3
pr

3k2 + 288c3Bc
4
pr

2k3 + 410c5Bc
2
pr

3k + 394c4Bc
3
pr

2k2 + 72c3Bc
4
prk

3+
129c5Bc

2
pr

2k + 84c4Bc
3
prk

2 + 8c3Bc
4
pk

3 + 24c5Bc
2
prk + 8c4Bc

3
pk

2 + 2c5Bc
2
pk = 0

Figure 3.4: Equation for MNFS-A: (the parameters r and k are discrete)

69



Question 35. What happens when cp →∞?

When the value of cp tends to infinity, we expect to recover the complexity of MNFS-A in the medium
characteristic case. Indeed, when setting r = k = 1, the equation resulting from solving the Lagrange
multipliers-system becomes

−15c6B + 18c3B + 1 = 0,

which admits a unique positive real root cB =
3

√
3
5 +

4
√

2
3

5 . Finally the asymptotic complexity of MNFS-

A is given by LQ (1/3, 2cB) , with 2cB = 2
3

√
3
5 +

4
√

2
3

5 ≈ 2.156. This is exactly the value found in medium
characteristic.

An attempt at lowering the complexity of MNFS. Some polynomial selections such as A and
JLSV2 output two polynomials f1 and f2 where f2 is taken to be the polynomial whose coefficients are the
coefficients of the shortest vector in an LLL-reduced lattice of some dimension D. The remaining V − 2
number fields are defined by polynomials which are linear combinations of f1 and f2. From the properties
of LLL, we assume the vectors in the LLL-reduced basis have similar norms. Instead of building fi as
αif1 + βif2 where αi, βi ≈

√
V , one can take a linear combination of more short vectors, and thus have

fi = αi,1f1 + αi,2f2 + · · · + αi,DfD and αi,j ≈ V 1/2D. However, this does not affect the asymptotic
complexity. When cp →∞, the coefficient term becomes negligible. On the other hand, when cp is small,
the norms become smaller and this results in a slightly lower complexity. However the gain is very small,
nearly negligible.

When looking at TNFS with n prime. We consider a linear polynomial g and a polynomial f of
degree d where both polynomials have coefficients of size O

(
p1/(d+1)

)
. This corresponds to the naive

base-m polynomial selection. The TNFS setup requires a polynomial h of degree n with coefficients of
size O(1). As usual, to compute the complexity, we are interested in the size of the norms. This is given
in Section 3.3.2 and when evaluating the term C(n, d), which is not negligible due to the size of n as
opposed to the large characteristic case presented in [BGK15], we note that the overall complexity of
TNFS at this boundary case is greater than the usual LQ (1/3). Indeed, we have

logC(n, d) =
δ

cp
(logQ)4/3(log logQ)−1/3 +

4

3cp
(logQ)2/3(log logQ)1/3.

Since (logQ)4/3(log logQ)−1/3 > (logQ)2/3(log logQ)1/3 for large enough value of Q, we have C(n, d) >
LQ(2/3, x) for any constant x > 0. Thus this algorithm is not applicable in this case. Moreover, if we
write p = LQ (α, c), this argument is valid as soon as α ≤ 2/3.

In order to apply the ideas of TNFS to the medium and small characteristic cases, we consider n to
be composite and write n = ηκ. This leads to the variant called exTNFS and its multiple number field
extension, MexTNFS.

3.5.2 (M)exTNFS
When the extension degree n = ηκ is composite, using the extended TNFS algorithm and its multiple
field variant allows to lower the overall complexity.

Before starting the complexity analysis, we want to underline a main difference with other analyses
seen previously. So far, the degree t of the sieving polynomials has always been taken to be a function of

logQ, i.e., we usually set t = ct
cp

(
logQ

log logQ

)1/3

. In the following analysis, the value of t is a discrete value.
Indeed, if one chooses to analyze the complexity using t as a function of logQ, we get the following value
in the product of the norms: Q(t−1)/(d(r+1)) = LQ (1, kctcη/(r + 1)) . This implies that the norms become
too big to give a final complexity in LQ (1/3).

We now concentrate on the analysis of exTNFS, using Algorithm B. Continuous parameters are B,
A, η and the discrete values are r, k, t. For simplicity we report only the case t = 2. The product of the

70



norms is bounded by
|N1N2| < Aηd̂(2r+1)pkη/(r+1)C(η, d̂r)C(η, d̂(r + 1)).

The two combinatorial terms are not negligible at this boundary case. The probability of getting relations
is thus given by

P = LQ

(
1

3
,
−1

3cB

(
(2r + 1)cA

k
+
kcηcp
r + 1

+
2r + 1

2kcp

))
,

and using the condition P = 1/B allows us to obtain a non-linear equation in the various parameters
considered given by pr + cB = 0.

In order to minimize 2cB under this non-linear constraint, we proceed as before and use Lagrange
multipliers and solve the system exhibited in Section 3.3 with a Gröbner basis approach. This allows us
to obtain an equation of degree 4 in cB and r and degree 2 in cp and k. The equation is given below
where the parameters r, k are discrete.

36c2pc
4
Br

2k2 + 72c2pc
4
Brk

2 + 36c2pc
4
Bk

2 − 24cpc
2
Br

3k − 32c2pcBr
2k2 − 60cpc

2
Br

2k−
48c2pcBrk

2 − 48cpc
2
Brk − 16c2pcBk

2 + 4r4 − 12cpc
2
Bk + 12r3 + 13r2 + 6r + 1 = 0

Since r, k are discrete values, one can then loop through their possible values and pick the ones which
give the smallest complexity.

Again, we can test the complexity when approaching the medium characteristic case.

Question 36. What happens when cp →∞?

When cp →∞, the optimal complexity is achieved when r = k = 1 and the above equation becomes

144c4Bc
2
p − 144c2Bcp − 96cBc

2
p + 36 = 0.

Hence, when cp → ∞, the complexity converges to 2cB =
(

48
9

)1/3 which is the complexity found in
medium characteristics for exTNFS.

Question 37. What happens when one adds the multiple variant to the extended tower variant?

In the context of MexTNFS, the constants in the LQ-notation for the probabilities become

pr1 =
−1

3cB

(
cA(r + 1)

k
+
r + 1

2kcp

)
,

and
pr2 =

−1

3(cB − cV )

(
rcA
k

+
kcpcη
r + 1

+
cV cη

2
+

r

2kcp

)
.

We proceed as usual by considering the condition P = 1/B which gives a non-linear constraint and we
minimize 2cB under this constraint. We obtain an equation of degree 15 in cB , of degree 8 in cp and of
degrees 11 and 8 in r and k (which we do not provide this time). Again, since r and k are discrete values,
one can loop through their possible values to minimize the complexity. As cp increases, the multiple
variant allows to decrease the complexity, as seen in Figure 3.5.

Again, we can test the complexity when approaching the medium characteristic case.

Question 38. What happens when cp →∞?

When r = k = 1, the equation mentioned above becomes

−29859840c15
B c

6
p + 29859840c13

B c
8
p + 48439296c13

B c
5
p + 30357504c12

B c
6
p − 31850496c11

B c
7
p − 17915904c10

B c
8
p

−24868224c11
B c

4
p − 22118400c10

B c
5
p + 857088c9Bc

6
p − 497664c7Bc

8
p + 3866112c9Bc

3
p + 2112000c8Bc

4
p

−751616c7Bc
5
p − 55296c6Bc

6
p − 237312c7Bc

2
p − 84480c6Bc

3
p + 52736c5Bc

4
p − 6144c4Bc

5
p + 6912c5Bcp

+1536c4Bc
2
p − 2048c3Bc

3
p = 0

71



and when cp → ∞, this equation admits for unique real positive root cB =
3

√
3
10 +

2
√

2
3

5 . The final
asymptotic complexity is then given by 2cB ≈ 1.71 and we recover the value given in [SS16b] in the
medium characteristic case for MexTNFS. This value is as expected slightly lower than the asymptotic
complexity of exTNFS which is equal to

(
48
9

)1/3 ≈ 1.74.

Figure 3.5: Comparing MexTNFS and exTNFS with polynomial selection B. The variant exTNFS
converges to ≈ 1.74 whereas MexTNFS converges to ≈ 1.71 when cp →∞.

A note on the JLSV2 polynomial selection. When considering the JLSV2 polynomial selection
for exTNFS (same for MexTNFS), the norms are bounded by

|N1| < Aηκ||f ||η∞C(η, κ) = Aηκpκη/(d+1)C(η, κ),

|N2| < Aηd||g||η∞C(η, d) = Aηdpκη/(d+1)C(η, d).

The terms C(η, κ) and C(η, d) are not negligible at this boundary case, and C(η, κ) = LQ (2/3, cηcκ/2).
Similarly, we have C(η, d) = LQ (2/3, δcη/2) . By looking at the terms in N2 and the value of C(η, d),
one notes that the norm is minimized when η = 1 since it only appears in the numerators. This means
that n is not composite. Thus, no improvement to JLSV2 can be obtained by considering a composite n.

3.5.3 S(T)NFS
We give as an example the complexity analysis of SNFS and then explain why STNFS is not applicable
at this boundary case.

SNFS. From the characteristics of the polynomials outputted by the polynomial selection used for
SNFS given in Table 3.2, we compute the product of the norms which is given by

|N1N2| < n2tλttn(λ+1)p1/λAn(λ+1)(log(n))λt.

The probability that both norms are smooth is given by P = LQ

(
1
3 ,
−1
3cB

(
λ+1
3cp

+ (λ+ 1)cA + ct
λ

))
. We

consider the usual constraint given by the NFS analysis, cB + p = 0. By deriving this constraint with
respect to ct and using a Gröbner basis approach, we obtain the following equation of cB as a function
of cp:

81c4Bc
2
pλ

2 − 18c2Bcpλ
3 − 18c2Bcpλ

2 − 72cBc
2
pλ

2 − 72cBc
2
pλ+ λ4 + 2λ3 + λ2 = 0.

The complexities of SNFS with varying λ values can be seen in Figure 3.6. As done previously, we can
test the complexity when approaching the medium characteristic case.

72



Algorithm N1 N2 Complexity 2cB
cp = 1 cp = 5 cp →∞

NFS-JLSV0 1
6cp

+ ct
2 + cA

1
6cp

+ ct
2 + cA 2.54 2.45

(
128
9

)1/3 ≈ 2.4

NFS-JLSV1 1
6cp

+ ct
2 + cA

1
6cp

+ ct
2 + cA 2.54 2.45

(
128
9

)1/3 ≈ 2.4

NFS-JLSV2 1
6cp

+ ct
δcp

+ cA
δ
6 + ct

δcp
+ δcAcp 2.87 2.62

(
128
9

)1/3 ≈ 2.4

NFS-A r+1
6kcp

+ (r+1)cA
k

r
6kcp

+ rcA
k + kct

r+1 2.39 2.24
(

96
9

)1/3 ≈ 2.2

MNFS-JLSV1 1
6cp

+ ct
2 + cA

1
6cp

+ ct
2 + cA + ctcV

2cp
2.52 2.36 2

3
√

7+4
√

3
32/3 ≈ 2.31

MNFS-JLSV2 1
6cp

+ ct
δcp

+ cA
δ
6 + ct

δcp
+ δcpcA + ctcV

2cp
– 2.62 2

3
3

√
23 + 13

√
13

2 ≈ 2.396

MNFS-A r+1
6kcp

+ (r+1)cA
k

r
6kcp

+ rcA
k + kct

r+1 + ctcV
2cp

– 2.22 2
3

√
3
5 +

4
√

2
3

5 ≈ 2.156

exTNFS-B (r+1)cA
k + r+1

2kcp
rcA
k +

kcηcp
r+1 + r

2kcp
2.35 1.89

(
48
9

)1/3 ≈ 1.747

MexTNFS-B (r+1)cA
k + r+1

2kcp
rcA
k +

kcηcp
r+1 + r

2kcp
+

cV cη
2 2.35 1.86 2

3

√
3
10 +

2
√

2
3

5 ≈ 1.71

SNFS-λ 1
6cp

+ ct
λ + cA

λ
6cp

+ λcA – –
(

64(λ+1)
9λ

)1/3

SNFS-2 1
6cp

+ ct
2 + cA

2
6cp

+ 2cA 2.39 2.24
(

192
18

)1/3 ≈ 2.20

SNFS-56 1
6cp

+ ct
56 + cA

56
6cp

+ 56cA 4.27 2.63
(

3648
504

)1/3 ≈ 1.93

STNFS cA +
cηcp
λ +

cηcκ
2 λcA +

cηcκλ
2 – – –

Table 3.3: Norms and complexities for (M)(ex)(S)NFS algorithms.

Question 39. What happens when cp →∞?

When cp → ∞, the complexity is given by 2cB = (64(λ+ 1)/(9λ))
1/3. When λ = 1, this value is equal

to (128/9)
1/3. This is not surprising as λ is the degree of the polynomial P that defines p, and if λ =

degP = 1, we are simply considering NFS. When λ ≥ 2, the complexity becomes better than (128/9)
1/3.

If λ is chosen to be a function of logQ, for example if λ = n, then the norms become too big, and the
resulting complexity is much higher.

STNFS. We look at the composite case where n = ηκ and consider the exTNFS algorithm with
the special variant. From Table 3.2, we have the following norms: |N1| < Anpη/λC(η, κ) and |N2| <
Anλ(log κ)ηλC(η, κλ).

First, the term (log κ)ηλ is negligible due to the size of κ and η. Among the remaining terms, for
a fixed λ value, one can see that the size of the norms is minimized when η = 1, thus when n is not
composite. Hence, applying the special variant to the exTNFS algorithm will output a complexity greater
than LQ(1/3) as already seen above. The STNFS algorithm can be used in medium characteristics for
composite n as shown in [KB16]. In this case, the value of λ is chosen to be a function of logQ, and
allows to obtain a minimal value for the complexity where the value of η is not necessarily equal to 1.
In particular, the product nλ can be chosen such as to keep the norm in LQ (2/3) since n is not fixed as
opposed to the boundary case.

Remark 7. The algorithm MNFS-JLSV2 is absent from the left part of Figure 3.6 since for small values
of cp, the optimal value for the parameter V reaches its boundary and thus MNFS simply becomes NFS.
This is also the case for MexTNFS-B and MNFS-JLSV1 for smaller values of cp.

3.6 Crossover points between NFS, FFS and the Quasi-Polynomial
algorithms

Because so many algorithms cohabitate at this boundary case, in order to find out which one performs
best, it is important to determine the exact crossover points between their complexities. In this section,

73



Figure 3.6: Complexities of NFS and all its variants as a function of cp.

after briefly recalling the proven complexity of the quasi polynomial algorithms, we provide exact crossover
points between FFS and QP and then between FFS and NFS (and its variants).

3.6.1 Quasi-Polynomial algorithms
After half a decade of both practical and theoretical improvements led by several teams and authors, the
following result was finally proven in 2019:

Theorem 8 (Theorem 1.1. [KW19]). Given any prime number p and any positive integer n, the discrete
logarithm problem in the group F×pn can be solved in expected time CQP = (pn)2 log2(n)+O(1).

This complexity is Quasi-Polynomial only when p is fixed or slowly grows with Q. When p is in the
whereabouts of LQ(1/3) and n in (logQ)2/3, we obtain a complexity comparable to LQ(1/3). Therefore
this algorithm must come into play in our study; we abbreviate it by QP, even if in our range of study
its complexity is no longer Quasi-Polynomial.

3.6.2 Crossover between FFS and QP
When p = LQ (1/3, cp), the complexity of QP algorithms is a power of the term exp

(
log(Q)1/3(log logQ)5/3

)
larger than any LQ(1/3) expression. The crossover point is therefore for a characteristic p growing slower
than an LQ(1/3) expression. In this area, the complexity of FFS is CFFS = LQ(1/3, (32/9)1/3) or
Cshifted FFS = LQ(1/3, (128/81)

1/3
) if n is composite and has a factor of exactly the right size so that the

shifted FFS yields an optimal complexity. These complexities correspond to the complexities of (shifted)
FFS when cp → 0.

The crossover point is when the expression of CQP takes the LQ(1/3) form. More precisely, this occurs
when p has the following expression

p = exp
(
γp(logQ)1/3(log logQ)−1/3

)
=: MQ (1/3, γp) ,

where we define the notation MQ (α, β) = exp (β(logQ)α(log logQ)−α). This MQ function fits as follows
with the LQ function: for any positive constants α, β, γ, and ε, when Q grows to infinity we have the
following inequalities LQ (1/3− ε, β)�MQ (1/3, γ)� LQ (1/3, α) .

Writing Q = pn with p of this form, the formula for the extension degree n becomes

n =
1

γp
(logQ)2/3(log logQ)1/3,

74



so that the cost of the QP algorithm is

CQP = LQ

(
1

3
,

4γp
3 log 2

)
.

Equating this cost with the complexity of FFS, we obtain the crossover point. If only the non-shifted
FFS is available, for instance because n is prime, then the crossover is when p = MQ

(
1/3,

(
3
2

)1/3
log 2

)
.

Otherwise, if n has a factor of an appropriate size for the shifted FFS, the crossover is at the value p =

MQ

(
1/3,

(
2
3

)1/3
log 2

)
.

3.6.3 Crossover between NFS and FFS
We compare the performance of FFS with the best variants of NFS. All complexities are expressed
as LQ (1/3, c), where c is a function of cp. Thus, it is enough to compare the values of c for each
algorithm. Let cFFS be this value in the case of FFS and cNFS for NFS and all its variants.

We look for the value of cp for which cFFS = cNFS, where the best variant of NFS depends on the
considerations made on n and p. Indeed, when no special considerations are made on either n or p, the
best algorithm among the variants of NFS is MNFS-A as seen in Section 8.4. When n is composite, the
algorithm that performs best when cp is small is (M)exTNFS-B depending on cp. Finally, when p is taken
to have a special form, the SNFS algorithm gives a good complexity when cp is small and MNFS does
not. For each of these algorithms, we know cNFS as a function of cp. Moreover, when looking at the FFS
algorithm, we note that the crossover value is located in the area where the linear algebra phase is the
dominant and that in this area the value of D is 1. Thus cFFS = 2cp. Hence, we are able to compute
exact values of these crossover points which we report in Table 3.4. The complexity of SNFS depends on
the value of λ. We report in Table 3.4 the crossover points for λ = 3, 20 and 56. The smallest cp value
for the crossover point with FFS corresponds to λ = 3. Note also that for the range of cp for which the
NFS variants intersect FFS, the variant MexTNFS performs very similarly than exTNFS, and thus we
only report the crossover point with MexTNFS.

normal p special p, λ = 3, 20, 56
n prime cp = 1.23, c = 2.46, MNFS-A cp = 1.17, 1.41, 1.75, c = 2.34, 2.81, 3.50, SNFS-λ

n composite cp = 1.14, c = 2.28, MexTNFS-B

Table 3.4: Values of cp for crossover points between FFS and variants of NFS, together with their relative
complexities LQ(1/3, c).

3.7 Considering pairings
When constructing a pairing e : E × E → Fpn for some elliptic curve E over the finite field Fp, one must
take into account the hardness of DLP in both a subgroup of E and in Fpn = FQ. A natural question
arises.

Question 40. Asymptotically what finite field Fpn should be considered in order to achieve the highest
level of security when constructing a pairing?

The goal is to find the optimal p and n that answers the above question. Note that pairings always come
with a given parameter that indicates whether the prime-order subgroup of E is large. More precisely,
this parameter ρ is defined as ρ = log p/ log r where r is the size of the relevant prime-order subgroup of
E over Fp. In all the known constructions, we have ρ ∈ [1, 2].

3.7.1 Landing at p = LQ(1/3) is not as natural as it seems
The fastest known algorithm to solve the DLP on elliptic curves is Pollard rho with a running-time
of O(

√
r), which means O(p1/2ρ). In order to optimize the security of the scheme that uses such a

pairing, a naive and common approach is to balance the two asymptotic complexities, namely p1/2ρ

75



and LQ(1/3). This would result in p = LQ(1/3). This equality is not as simple to justify. In the FFS
algorithm, the cost of sieving and linear algebra are not taken to be equal, which is a common hypothesis
made in the complexity analyses of NFS for example. Assuming this equality would potentially lead to
worse complexities. For the same reason, equalizing the cost of the DLPs on the elliptic curve and on
the finite field may miss other better options. Interestingly enough, we need the full comprehension of
asymptotic complexities at this boundary case to understand why we consider finite fields of this size.

In order to avoid Quasi-Polynomial algorithms, it is clear that one must choose a characteristic
p >MQ(1/3, (2/3)1/3 log 2). Since FFS and all the variants of NFS have a complexity in LQ(1/3, c), we
then look for finite fields for which the algorithms give the largest c. We distinguish five different areas:

1. Small characteristic when p > MQ(1/3, (2/3)1/3 log 2). FFS reaches a complexity with c =
(32/9)1/3 ≈ 1.53, or lower if n is composite.

2. Boundary case studied in this thesis. Various algorithms coexist. When considering the
complexity of the optimal algorithms, c roughly varies from 1.16 to 2.46. Note that 2.46 is the
lowest complexity reached at the crossover point between FFS and MNFS-A when nothing is known
about p and n.

3. Medium characteristic. The lowest complexity in the general case is reached by MNFS-A,
giving c ≈ 2.15.

4. Boundary case between medium and large characteristics. The lowest complexity in the
general case is reached by MNFS-A giving here c ≈ 1.70.

5. Large characteristic. The lowest complexities in the general case are reached by MNFS-A or
MTNFS giving here c ≈ 1.90.

Thus, we see that the best choice is indeed p = LQ(1/3) so one can expect to reach the highest
complexities for DLPs, in particular higher than LQ(1/3, 2.15), the lowest complexity achieved in medium
characteristic.

3.7.2 Fine tuning of cp to get the highest security
Let us now find cp that optimizes the security. Let CE (resp. CFQ) be the cost of the discrete logarithm
computation on the subgroup of the elliptic curve E (resp. the finite field FQ). On one hand, we
have CE = p1/2ρ. This can be rewritten as CE = LQ (1/3, cp/2ρ). For ρ fixed, CE is an increasing function
of cp.

On the other hand, the best algorithm to compute discrete logarithms in a finite field depends on
three parameters: the size of the characteristic p, the form of p and whether the extension degree n is
composite.

General case. Assuming nothing about n and p, the best variant of NFS at this boundary case is
MNFS-A. Thus, we have

CFQ =

{
LQ (1/3, cFFS(cp)) , when cp ≤ σ
LQ (1/3, cMNFS-A(cp)) , when cp ≥ σ

where calgo(cp) is the constant in the LQ expression of the complexity of the algorithm “algo”, and σ is
the crossover value of cp between FFS and MNFS-A.

We then want to find the value of cp that maximizes min(CE , CFQ). Figure 3.7 shows how the relevant
algorithms varies with respect to cp. Note that the crossover point between CE and CFQ is not with FFS:
we just need to compare CE with the complexity of MNFS-A. The latter being a decreasing function with
respect to cp, whereas CE is an increasing function, we conclude that the highest complexities are given
at the crossover points between these curves.

For ρ = 1, the optimal choice is p = LQ(1/3, 4.45), which results in an asymptotic complex-
ity in LQ(1/3, 2.23). For ρ = 2, the optimal choice is p = LQ(1/3, 8.77) resulting in a complexity
in LQ(1/3, 2.19), see Tables 3.5 and 3.6. Increasing ρ from 1 to 2 increases the optimal value of cp, and
thus the asymptotic complexity decreases. This is illustrated in Figure 3.7.

76



Figure 3.7: Comparing the complexities of FFS, MNFS-A and Pollard rho for ρ = 1 and ρ = 2. I1 and
I2 are the crossover points of CE and CFQ .

Figure 3.8: Comparing the complexities of FFS, MNFS-A, MexTNFS-B, SNFS-3, SNFS-20 and Pollard
rho for ρ = 1 and ρ = 2. The complexity of MexTNFS-B is always below MNFS-A which means that a
composite n leads to faster algorithms. Yet the complexity of SNFS depends on the value of λ, which is
not always below MNFS-A. This means that having a special p does not always decrease the security of
the related pairing scheme.

If the extension degree n is composite. The best option as an adversary is to use MexTNFS-B. Its
complexity is a decreasing function below the complexity of MNFS-A, see Figure 3.8. Thus, the strategy
remains the same. With ρ = 1 and cp = 3.81 we obtain an asymptotic complexity in LQ(1/3, 1.91).
With ρ = 2 and cp = 7.27 we have a complexity in LQ(1/3, 1.82), see Tables 3.5 and 3.6. This is
illustrated in Figure 3.8.

Special sparse characteristics can be used! When p is given by the evaluation of a polynomial of
low degree λ, SNFS is applicable. Yet Figure 3.6 shows that SNFS is not always a faster option than
MNFS-A. The behavior of SNFS with regards to MNFS-A depends on λ:

• If λ = 2 or λ ≥ 29, then MNFS-A is faster than the related SNFS for all ρ.

• If 3 ≤ λ ≤ 16, the related SNFS is faster than MNFS-A for all ρ.

• If 17 ≤ λ ≤ 28, the best choice depends on ρ. For instance, if λ = 20 MNFS-A is faster if ρ ≤ 1.3
but SNFS becomes faster if 1.3 ≤ ρ, see Figure 3.9.

Surprisingly enough, this means that we can construct a pairing with a special sparse characteristic
without asymptotically decreasing the security of the pairing. For instance, with λ = 20, ρ = 1, the best

77



Figure 3.9: Increasing ρ makes the security decrease. The first figure gives optimized values of cp as a
function of ρ, and the second figure shows the second constant in the complexities, as a function of ρ,
depending on the algorithm.

normal p special p special p
λ = 20 λ = 3

n prime cp = 4.45, cMNFS-A = 2.23 cp = 4.36, cSNFS-3 = 2.18
n composite cp = 3.81, cMexTNFS-B = 1.91

Table 3.5: Optimal choices for pairing constructions with ρ = 1, depending on the form of p and n.
Each cell gives the value cp determining p as p = LQ(1/3, cp), together with calgo, which gives the best
asymptotic complexity LQ(1/3, calgo) reached by the algorithm algo for the related case.

option is to take cp = 4.45. This gives a complexity in LQ(1/3, 2.23), which is the one obtained with a
normal p of the same size. But for λ = 20 and ρ = 2 the security gets weaker than in the normal case:
taking cp = 8.51 allows to decrease the complexity from LQ(1/3, 2.19) (for a normal p) to LQ(1/3, 2.13)
(for this special p), see Table 3.6.

Combining special p and composite n. We saw in Section 3.5.3 that combining SNFS and exTNFS-
B is not possible at this boundary case. Since (M)exTNFS-B is always lower than SNFS for the values of
cp considered, with both n composite and p special, the best option is to ignore the form of p, and apply
MexTNFS-B.

3.7.3 Conclusion
We studied all possible cases regarding p and n in order to extract the optimized values of cp, leading to
the highest asymptotic security of the related pairing. Tables 3.5 and 3.6 summarize these complexities
depending on what is known about p and n. We give our results for ρ = 1 and ρ = 2. Increasing ρ
decreases the complexities and thus the security of pairings, so the values in Table 3.5 are upperbounds
on the asymptotic complexities of all currently known pairing constructions. Note however that ρ = 1
is achieved with some well-known efficient pairing friendly curves such as MNT or BN curves, yet we
emphasize that these families are not asymptotic and, to the best of our knowledge, designing an efficient
asymptotic family of pairings reaching ρ = 1 is still an open question. The best asymptotic security is
given with ρ = 1, n prime, and p = LQ(1/3, 4.45), with p either normal or the evaluation of a degree d
polynomial, with d ≥ 29 or d = 2. The asymptotic complexities of all relevant attacks are in LQ(1/3, 2.23).

78



normal p special p special p
λ = 20 λ = 3

n prime cp = 8.77, cMNFS-A = 2.19 cp = 8.51, cSNFS-20 = 2.13 cp = 8.59, cSNFS-3 = 2.15
n composite cp = 7.27, cMexTNFS-B = 1.82

Table 3.6: Optimal choices for pairing constructions with ρ = 2, depending on the form of p and n.
Each cell gives the value cp determining p as p = LQ(1/3, cp), together with calgo, which gives the best
asymptotic complexity LQ(1/3, calgo) reached by the algorithm algo for the related case.

79



80



Chapter 4

Enumeration algorithms for algebraic
sieving in TNFS

In this chapter, we investigate the relation collection step of the Tower Number Field Sieve (TNFS)
algorithm. Because sieving in TNFS requires a higher dimensional space than in the classical NFS,
we propose a new efficient sieving algorithm for higher dimensions based on Schnorr-Euchner’s lattice
enumeration algorithm. On the contrary to previous higher-dimension sieving algorithms, we also use
a d-dimensional sphere instead of a d-dimensional orthotope as search space for relations. This allows
us to efficiently sieve in dimensions as large as 6 for example. We anchor our sieving algorithm in the
general context of relation collection explaining how it can be combined with other algorithms such as
ECM and batch smoothness to provide an optimized relation collection step. Finally, we incorporate
technical details such as Schirokauer maps, virtual logarithms and duplicate relations in order to present
a complete overview of the TNFS algorithm. This chapter serves as basis to the following Chapter 5
where we describe the first implementation of the TNFS algorithm and a 521-bit record computation.
Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 The Tower Number Field Sieve . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Mathematical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 A step by step walk through TNFS . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 Virtual logarithms and Schirokauer maps . . . . . . . . . . . . . . . . . . . 88

4.3 Focus on the relation collection . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 The special-q setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Different algorithms for sieving . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.3 Other algorithms to find smooth norms . . . . . . . . . . . . . . . . . . . . 95
4.3.4 Combining three algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.5 Filtering through equivalent relations . . . . . . . . . . . . . . . . . . . . . 97

4.4 Relation collection with lattice enumeration . . . . . . . . . . . . . . . 101
4.4.1 Existing algorithms to enumerate LQ,p ∩ S . . . . . . . . . . . . . . . . . . 101
4.4.2 Why do we choose a d-sphere? . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.3 Schnorr-Euchner’s enumeration algorithm for TNFS . . . . . . . . . . . . 104
4.4.4 Analysis of the enumeration algorithm . . . . . . . . . . . . . . . . . . . . 105
4.4.5 Overall complexity of relation collection . . . . . . . . . . . . . . . . . . . 109

4.5 Comparing with other methods . . . . . . . . . . . . . . . . . . . . . . . 110
4.5.1 Comparing with [Gré18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5.2 Comparing with [MR21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

81



4.1 Introduction
4.1.1 Motivation
The Number Field Sieve algorithm and its variants are the fastest known algorithms to solve the discrete
logarithm problem in finite fields of medium and large characteristics. One of these variants, the Tower
Number Field Sieve (TNFS), is a generalization of NFS that exploits towers of number fields, hence the
name. The main difference with NFS comes from the representation of the target field Fpn . Whereas in
the classical NFS setup, the finite field Fpn is represented as the quotient field Fp[x]/(f) where f is a
polynomial of degree n over Fp, in the TNFS setup, we have Fpn ∼= R/pR where R is the ring defined as
the quotient Z[t]/h(t), and h is also a degree n irreducible polynomial over Fp.

Originally proposed by Schirokauer [Sch00], the TNFS algorithm was reinvestigated in [BGK15] where
the authors simplified Schirokauer’s original presentation of the algorithm and incorporated more recent
tools such as Schirokauer maps and virtual logarithms. They also showed that the asymptotic complexity
of TNFS in large characteristic is Lpn(1/3, 3

√
64/9), similarly as NFS. In small and medium characteristics,

the complexity of TNFS is greater than the usual Lpn(1/3) and thus this algorithm is only considered
beyond the medium case.

The Tower NFS algorithm was then expanded to the extended TNFS in [KB16, KJ17] where the
extension degree n = ηκ is composite. This allows the extended variant to have an Lpn(1/3) complexity
also in medium characteristic. In this case, the overall complexity of exTNFS is as low as Lpn(1/3, 3

√
48/9)

and in large characteristic it equals Lpn(1/3, 3
√

64/9). These complexities are summarized in Table 4.1.
Both TNFS and exTNFS can be coupled with a multiple field variant and a special variant but we do
not address these variants in this chapter.

Algorithm medium char 2nd boundary Large char
NFS 96 48 64
TNFS – – 64
exTNFS 48 48 64

Table 4.1: The best complexities of each algorithm in medium and large characteristics. Since the
complexity is expressed as Lpn(1/3, 3

√
c/9) we only report the value c.

One can see from these complexities that for NFS, the medium characteristic is at least as hard as
the large characteristic. This remains true for most variants.

However, a noticeable exception to this observation lies in the exTNFS algorithm. Indeed, in medium
characteristic the algorithm has better complexity than in large characteristic which makes it a promising
candidate for computational records in finite fields of medium characteristic. So far, excluding the small
characteristic, all computational records were performed using the Number Field Sieve algorithm with
occasionally a special variant or FFS. The Tower Number Field Sieve has never been implemented (up to
this thesis) despite promising perspectives. Such an implementation would also provide practical insight
on security parameters for pairing-based protocols where the extension degree of the finite field is often
composite. In the rest of the chapter, we assume the degree n is composite, i.e., n = ηκ.

A major obstacle to an efficient implementation of the (extended) Tower Number Field Sieve algorithm
is the relation collection step. Indeed, whereas NFS requires sieving through (a, b) ∈ Z2 pairs, the tower
setup requires sieving through (a(ι), b(ι))-pairs, i.e., degree η − 1 polynomials with bounded coefficients.
This implies that sieving must occur in a space of dimension greater than 2 for which an efficient algorithm
must be found. We recall that in dimension 2, Franke and Kleinjung [FK05] proposed an efficient
algorithm used in all previous records.

For higher dimensions, the transition vectors method from Grémy [Gré18] and a recursive plane
method proposed by McGuire and Robinson [MR21] have been tested in dimension 3 and used for
record computations using NFS. However, the efficiency of their algorithms for even higher dimensions is
questionable.

The focus of this chapter is thus to introduce an efficient sieving algorithm in higher dimensions which
will allow us to implement TNFS and perform the first record computation with this variant.

82



4.1.2 Contribution
More specifically, we propose the following contributions.

Sieving in a high dimensional sphere instead of an orthotope. All sieving algorithms so far
considered a product of intervals as search space S. Indeed, whether a candidate relation is characterized
by an (a, b)-pair or an (a(ι), b(ι))-pair with more than two coefficients, every coefficient is bounded
separately in an interval [−Hi

1, H
i
2] for i = 1, 2, · · · , d where d is the total number of coefficients. Hence,

the search space considered is of the form S = [−H1
1 , H

1
2 ]× · · · × [−Hd

1 , H
d
2 ].

In this chapter, we argue that when d ≥ 3, the shape of the search space S must be adequately
chosen in order to have an efficient sieving algorithm. More precisely, we consider a d-sphere instead of a
d-orthotope and argue why we believe this choice leads to a more efficient algorithm when the dimension
grows.

Adapting a lattice enumeration algorithm to the context of TNFS. In order to fully exploit
the new search space, we adapt a known lattice algorithm to the context of TNFS: Schnorr-Euchner’s
enumeration algorithm [SE94]. The latter enumerates all the vectors of an input lattice L within a d-
dimensional sphere Sd. We modify this algorithm in order to answer the requirements of the sieving
step and provide a complete pseudo-code of our modified algorithm. This algorithm remains competitive
when the dimension grows and also provides an exhaustive search of all the vectors in L∩Sd. Finally we
compare this new sieving method with other previously mentioned algorithms.

A complexity analysis of the relation collection step in TNFS. Finally, we anchor this sieving
algorithm in the context of the entire relation collection step. Sieving algorithms are usually combined in
practice with batch algorithms and ECM to provide the most efficient relation collection. We explain the
details of the relation collection step, including Schirokauer maps and duplicate relations, as a preparation
for the next Chapter 5 which will give details of the actual implementation and the record computation.

4.2 The Tower Number Field Sieve
4.2.1 Mathematical setup
The classical tower of number fields that illustrates the TNFS setup considers the intermediate number
field Q(ι) where ι is a root of h, an irreducible polynomial mod p. Above this number field are set the
two number fields K1 = Q(ι)[x]/f1(x) and K2 = Q(ι)[x]/f2(x) where f1, f2 are irreducible polynomials
over R = Z[ι] that share an irreducible factor modulo the unique ideal p over p in Q(ι). We will write Oi
their ring of integers for i = 1, 2. Let α1 and α2 be roots of f1 and f2 in K1 and K2. This construction
is illustrated in Figure 4.1.

K1 K2

R ⊂ Q(ι)

Q

f1 f2

h

Figure 4.1: Tower of Number Fields.

Because of the conditions on the polynomials h, f1 and f2, there exists two ring homomorphisms from
R[x] = Z[ι][x] to the target finite field Fpn through the number fields K1 and K2. This allows to build a
commutative diagram as explained in Chapter 1 and shown in Figure 4.2.

83



R [x]

K1 ⊃ R [x] /(f1(x)) K2 ⊃ R [x] /(f2(x))

R/p[x]/(I(x)) ∼= Fpn
mod I, mod p mod I, mod p

Figure 4.2: Commutative diagram of TNFS.

Question 41. What are the advantages of (ex)TNFS?

When the degree n is composite, i.e., n = ηκ, the target finite field Fpn = Fpηκ can be viewed as FPκ
where P is a prime of the same bitsize as pη. Thus, the complexity of a computation done in medium
characteristic with exTNFS can be viewed similarly as the complexity of a computation done with NFS
at the boundary case between medium and large characteristic, meaning with a smaller c constant in the
Lpn -notation, see Table 4.1.

4.2.2 A step by step walk through TNFS
The TNFS algorithm then follows similar steps as any index calculus algorithm. The main differences
with the Number Field Sieve take place in the polynomial selection step and the collection of relations.

Polynomial selection. On the contrary of NFS which uses only two polynomials f1 and f2 to define
the number fields, three polynomials must be selected for this algorithm, namely h, f1 and f2. The
polynomial h must be of degree η and irreducible modulo p to ensure the uniqueness of the ideal p
over p in R. Ideally one would choose a unitary h with small coefficients and such that the inverse of
the Dedekind zeta function (implemented in Sage for example) is close to 1. Indeed, as we will see in
Section 4.3.5, similarly as for NFS, non-coprime ideals produce equivalent relations which are useless for
the linear algebra step. Moreover, the proportion of coprime ideals is given by∏

q prime ideal in Q(ι)

(
1− 1

N(q)2

)
=

1

ζQ(ι)(2)
,

where ζQ(ι) is the Dedekind zeta function. Hence, in order to reduce the amount of duplicate relations
produced because of these non-coprime ideals, one can choose an h with ζQ(ι)(2) as close to 1 as possible.

The polynomials f1 and f2 are selected using classic polynomial selections such as the Conjugation
method, JLSV or the Sarkar-Singh method.

Question 42. Which polynomial selection method should one use to select f1 and f2?

We assume here we do not consider sparse characteristics. Recall that JLSV produces polynomials f1

and f2 of same degree, say d, and with coefficients of size O(
√
p) for both polynomials.

On the other hand, the Conjugation method has more unbalanced parameters. The polynomial f1

has a larger degree 2d and small coefficient in O(1) and f2 has degree d (the same as for JLSV) and
coefficients of size O(

√
p).

Thus in order to decide which method to use, one should compare the size of the norms N1(φ) and
N2(φ) for elements φ ∈ R[x]. If N1(φ) < N2(φ), then one should choose the Conjugation method.
However, if N2(φ) < N1(φ), then one should choose the JLSV method since the polynomial f2, which
shares the same properties as polynomials outputted from JLSV, has the smaller norm.

In [SS19], Sarkar and Singh propose a polynomial selection D for exTNFS (already mentioned in
Chapter 3) which generalizes previous methods such as Conjugation and GJL. They show that using
this polynomial selection improves the overall complexity of exTNFS for certain ranges of finite fields in
medium characteristics.

84



The polynomials we will use in Chapter 5 for our 521-bit computation come from the Conjugation
method. Further details on how they were chosen will be given in Section 5.2.

Remark 8. In general, the coefficients of the polynomials fi are taken in R. However, as was noted
in [BGK15], no significant gain is observed by doing so and thus we will consider the case fi ∈ Z[x] in
the rest of the chapter.

In NFS, the quality of the polynomials can be refined with a quantity known as the Murphy-α value.
We refer to [GS21] for details about this value adapted to the TNFS context.

Relation collection. Recall that the goal of the relation collection step is to select among the set of
linear polynomials φ(x, ι) = a(ι) − b(ι)x ∈ R[x] at the top of the diagram the candidates which will
produce a relation.

As explained in Chapter 1, a relation is found if the polynomial φ(x, ι) mapped to K1 and K2 factors
into products of ideals of small norms in both number fields. The ideals of small norms that occur in
these factorizations constitute the factor basis. More precisely, the factor basis is defined as F = F1 ∪F2

with
Fi(B) = {prime ideals of Oi of norm ≤ B, whose inertia degree over Q(ι) is one},

for i = 1, 2.

Remark 9. The prime ideals in the factorization of (a(ι) − b(ι)αi)Oi can have degree at most deg φ.
Thus the ideals in the factor basis have degree at most 1 in the variable x. However, in the specific context
of TNFS, the polynomial φ is a polynomial in two variables: x and ι. Thus, these ideals can have degree
in ι up to degree of h.

Question 43. Why do we only consider ideals of degree 1 in ι?

In theory, we only lose a constant factor in the smoothness probabilities when excluding the ideals of
degree greater than 1. In practice, if we encounter a prime ideal that has a degree greater than 1 in the
variable ι, we keep the relation, as will be explained in Chapter 5. Otherwise, we would throw away too
many relations. The same holds for ideals dividing the index ideal [Oi : Oi[αi]] but there are only finitely
many and they can be handled separately.

The representation of these ideals of degree 1 in the context of TNFS is summarized in the following
result.

Proposition 1 (Proposition 1 [BGK15]). Let Q(ι) be a number field and let Oι be its ring of integers.
Let f be a monic irreducible polynomial in Q(ι)[x], and denote by α one of its roots. We denote by
K = Q(α, ι) the corresponding extension field, and Of its ring of integers.

If q is a prime ideal of Oι not dividing the index-ideal [Of : Oι[α]], then the following statement holds.

1. The prime ideals of Of above q are all the ideals of the form

Q = (q, T (α)),

where T (x) are the lifts to Oι[x] of the irreducible factors of f in Oι/q[x]. Moreover, degQ = deg T .

2. If a(t), b(t) ∈ Z[t] are such that q divides NK/Q(ι)(a(ι) − b(ι)α) and a(ι)Oι + b(ι)Oι = Oι, then
the unique ideal of Of above q which divides a(ι) − b(ι)α is Q = (q, α − r(ι)) with r ≡ a(ι)/b(ι)
(mod q).

To verify the B-smoothness of these ideals, one computes as usual the absolute norms N1(a(ι)−b(ι)α1)
and N2(a(ι)− b(ι)α2) using their definitions with the notion of resultant

N1(a(ι)− b(ι)α1) = Rest(Resx(a(t)− b(t)x, f1(x)), h(t))

85



and
N2(a(ι)− b(ι)α2) = Rest(Resx(a(t)− b(t)x, f2(x)), h(t)).

These formulas must be adapted when the polynomials fi are not monic by including the leading coefficient
raised to the degree of the polynomial, as seen in Chapter 1.

This allows to verify the B-smoothness over integer values. As usual, one collects enough relations
before constructing a linear system of equations. The unknowns of these equations are the virtual loga-
rithms of the ideals of the factor basis. The notion of virtual logarithms and a more explicit construction
of the system is given in Section 4.2.3.

Linear algebra: Wiedemann’s algorithm [Wie86]. The goal of Wiedemann’s algorithm is to
compute kernel vectors of a matrix over a finite field. Let M be the N ×N input matrix, in our context
the matrix of relations after filtering. The output of the algorithm is a kernel vector w 6= 0, i.e., a vector
w such that Mw = 0. We expect this vector to exist because M is constructed so that the virtual
logarithms of the ideals give such a solution.

The algorithm relies on the use of the minimal polynomial of the matrix M . We recall that the
minimal polynomial ofM , denoted µM , is the polynomial of smallest degree that annihilatesM , meaning
µM (M) = 0. We will write µM (x) =

∑d
i=0 cix

i where the degree d of µM is less than N by Cayley-
Hamilton’s theorem. First one can note that the constant coefficient c0 is necessarily equal to zero.
Indeed, we know that

∑d
i=0 ciM

iw = 0 and thus c0w = −
∑d
i=1 ciM

iw = 0. Hence c0 = 0.
Let ` be a large prime, in our context the prime ` is the largest factor of pn − 1. Indeed, discrete

logarithm computations are done modulo `, see Pohlig-Hellman’s reduction described in Chapter 1.
Because µM (M) = 0, we have

M

(
d∑
i=1

ciM
i−1

)
z = 0,

for any vector z randomly chosen with coefficients in Z/`Z. Hence one solution would be to consider
w =

(∑d
i=1 ciM

i−1
)
z. Of course, the vector w must be non-zero and this is the case if z is not in the

kernel of the matrix
(∑d

i=1 ciM
i−1
)
. In order to fully determine the solution w, it remains to determine

the sequence {ci}di=1 and find a suitable vector z.

Question 44. How do we find the coefficients ci?

Instead of directly computing µM , which is costly, Wiedemann’s algorithm considers the sequence λi =
aᵀM ib for i = 1, 2, · · · , 2N where a,b are two random vectors of size N with coefficients in Z/`Z. This
is known as the Krylov sequence. Because

∑N
i=0 ciM

i = 0 (from Cayley-Hamilton’s theorem), where the
ci are the coefficients of the minimal polynomial and one can add ci = 0 for i > d, we also have

N∑
i=1

ciaᵀM i+jb = 0,

for any j > 0. A key element in the algorithm is the fact that the sequence {aᵀM ib}2Ni=0 previously
computed is generated by a linear recursion. The Berlekamp-Massey [Ber15, Mas69] algorithm then
precisely allows to find the minimal polynomial of this sequence. Hence, we can find the coefficients ci
such that

N∑
i=1

ciaᵀM i+jb = 0.

Question 45. Does this implies that the ci satisfy
∑N
i=0 ciM

i = 0?

Wiedemann’s method relies on the assumption that the minimal polynomial of the sequence {aᵀM ib}2Ni=0

is equal to the minimal polynomial ofM with high probability for random vectors a and b. A result from
Kaltofen [Kal95][Theorem 5] proves that this is indeed the case. Hence, the d coefficients ci necessary to
find w can be extracted from the 2N coefficients {aᵀM ib}2Ni=1.

86



Question 46. How do we reconstruct the final solution?

Recall that we are looking for a vector w 6= 0 such that Mw = 0. Now that we have the coefficients ci
for i = 1, 2, · · · , d, reconstructing w is done as explained in the beginning. For a random vector z with
coefficients in Z/`Z, we have w =

(∑d
i=1 ciM

i−1
)
z.

Question 47. What is the complexity of Wiedemann’s algorithm?

The main cost of Wiedemann’s algorithm comes from the cost of multiplying a sparse matrix by a vector.
This operations has a cost of O(λN) where λ is the average number of non-zero coefficients per row.
Hence, computing the sequence {aᵀM ib}2Ni=1 has a cost in O(λN2) and so does computing the final solu-
tion. Since Berlekamp-Massey algorithm has variants with a quasi-linear complexity, the overall cost of
Wiedemann’s algorithm is in O(λN2), which is the cost of linear algebra already mentioned in Chapter 3.

A major improvement to Wiedemann’s algorithm is the use of a block variant which allows to paral-
lelize part of the algorithm. This is a significant advantage for record computations. This block variant
will be described in Chapter 5 as we use it for our record computation.

Descent in TNFS. Recall that the final step of TNFS consists in finding the discrete logarithm of the
target element. This step is subdivided into two substeps: a smoothing step and a descent step. The
smoothing step is an iterative process where the target element t is randomized by considering s = gxt ∈
F∗pn for an exponent x chosen uniformly at random. Values for x are tested until s lifted back to one of
the number fields Ki is Bi-smooth for a smoothness bound Bi > B.

The second step consists in decomposing every factor of the lifted value of s, in our case prime ideals
with norms less than Bi (but usually greater than B) into elements of the factor basis for which we now
know the virtual logarithms. This process creates descent trees where the root is an ideal coming from
the smoothing step, and the nodes are ideals that get smaller and smaller as they go deeper. The leaves
are ultimately elements of the factor basis. The edges of the tree are defined as follows: for every node,
there exists an equation between the ideal of the node and all the ideals of its children.

We focus here on an improvement given by Guillevic in [Gui19] for the first of these two steps, i.e.,
the smoothing step. The goal is to improve the Bi-smoothness probability of the lift of s ∈ F∗pn to Ki.
Let s′ denote this lift. Note that this lift to Ki is done on a unique side, usually the one with smaller
norms.

Let ϕi be the map from Ki to Fpn . Instead of requiring that ϕi(s′) = s, the algorithm looks for s′ ∈ Ki

such that ϕi(s′) = su for u ∈ Fpη . Indeed, since log(u) = 0 we will still have log(ϕi(s
′)) = log(s).

Now, the set of pre-images such that ϕ(s′) = su forms a lattice. The general idea of this improvement
is then to construct the lattice spanned by these pre-images and reduce its basis to obtain a short vector.
The shortest vector of the reduced basis will define an element of Ki with potentially small norm which
is precisely the s′ we are looking for.

Question 48. How is the lattice basis constructed?

We look at the Fp-vector space {su} for u ∈ Fpη of dimension η with basis B =< s, sι, sι2, · · · , sιη−1 >
where ι is a root of the polynomial h that defined Fpη = Fp[ι]/(h). Using Gauss reduction’s algorithm,
we obtain a row-echelon basis of this vector space where each line denotes an si candidate.

The lattice basis generates the set of elements of Ki such that ϕ(s′) = 0 or ϕ(s′) = si. These
correspond to either multiples of p (for which the projection will give 0), lifts of the si given above, namely
s′i or finally multiples of the polynomial I that defined the target finite field, i.e., Fpn = Fp[x]/(I). The
following lattice basis can thus be constructed as follows. We give an example for n = 6 and η = 3 to
simplify the presentation of the basis where each line corresponds to the coefficients of the polynomials
given on the left. We refer to [Gui19][Algorithm 5] for the full algorithm.

87



1 ι ι2 x xι xι2 x2 x2ι x2ι2 x3 x3ι x3ι2



p p
pι p
pι2 p

s′1 ∗ ∗ ∗ 1
s′2 ∗ ∗ ∗ ∗ 1
s′3 ∗ ∗ ∗ ∗ ∗ 1

I ∗ ∗ ∗ ∗ ∗ ∗ 1
ιI ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
ι2I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

xI ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
xιI ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
xι2I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1

4.2.3 Virtual logarithms and Schirokauer maps
We have already mentioned in Chapter 1 that the relations come from polynomials φ at the top of
the commutative diagram which give linear equations between the virtual logarithms of ideals of small
norms. We now explain what these virtual logarithms are and how they are connected to the notion of
Schirokauer maps. We describe these concepts in the classical NFS setup to facilitate the presentation.

Recall from Chapter 1 that Pohlig-Hellman’s reduction allows to find discrete logarithms in prime or-
der subgroups and then reconstitute the target discrete logarithm in the general group using the Chinese
Remainder Theorem. From now on, let ` be a prime divisor of pn−1 and we will consider the computation
of logarithms modulo `. Moreover, in the rest of the section, an element x ∈ Oi of an intermediate num-
ber fieldKi mapped to the target field Fpn using the maps ϕi, see Chapter 1, Figure 1.4, will be denoted x.

Question 49. Why do we need virtual logarithms and what are they?

Let us start with the classical NFS diagram. At the top of the diagram, we begin with a pair (a, b) and
we map the quantity a− bx ∈ Z[x] into two intermediate number fields Ki. We get a− bx (mod (fi)) =
a− bαi ∈ Z[x]/(fi) ⊂ Oi for i = 1, 2. Let us assume that the pair (a, b) is B-smooth on both sides. Since
the diagram is commutative, we have an equality in the bottom field Fpn which then gives a relation.

In the intermediate number fields, the ideals (a−bαi) can be decomposed into a product of first degree
prime ideals, i.e., we have

(a− bα1)O1 =
∏
j

pj
ej and (a− bα2)O2 =

∏
j

qj
e′j ,

where ej , e′j > 0 are integer values. Because we have assumed B-smoothness on both sides, this means
all the ideals pj , qj in the above equations are contained in the factor basis. The multiplicative relations
we have at the end of the sieving step are thus of the form

(a− bα1)O1 =
∏
j

pj
ej“ = ”

∏
j

qj
e′j = (a− bα2)O2

where the quantities need first to be mapped to Fpn . For the linear algebra step, we want to transform
these multiplicative relations into additive relations of the form

e1“ log(p1)” + · · ·+ em“ log(pm)” = e′1“ log(q1)” + · · ·+ e′n“ log(qn)” (mod `).

Since we do not know how to compute the quantities “ log(pj)” and “ log(qj)”, we look for an alternative
definition of logarithm which still allows us to write an additive relation. This alternative definition is
known as a virtual logarithm. We now proceed to explaining the context in which they arise from.

88



The ideals in the factor basis are not necessarily principal. Let hi be the (finite) class number of the
intermediate number field Q[x]/(fi(x)) for i = 1, 2. Then, we know that pjh1 and qj

h2 are principal ideals
for all j and thus we can write

pj
h1 = (γpj )O1 and qj

h2 = (γqj )O2.

Remark 10. An important observation is that class numbers h1, h2 are computationally hard to obtain
and are only used in this context to describe the intuition behind the definition of a virtual logarithm.

Continuing with the expression of principal ideals, we have

(a− bα1)h1O1 =
∏
j

(γpj )
ejO1 and (a− bα2)h2O2 =

∏
j

(γqj )
e′jO2.

Since two generators of a same principal ideal are equal up to a unit of Ki, there exist units ui ∈ Oi such
that (a − bα1)h1 = u1

∏
(γ
ej
pj ) and (a − bα2)h2 = u2

∏
(γ
e′j
qj ). Mapping these elements to Fpn and taking

the log would yield

h1 log(a− bα1) = log(u1) +
∑
j

ej log(γpj ) (mod `)

and
h2 log(a− bα2) = log(u2) +

∑
j

e′j log(γqj ) (mod `).

The quantities in the logarithms on the right-hand-side of the equations are undefined. Let us focus
on the units first.

Question 50. How can we define the quantities log(u1) and log(u2)?

The answer to this question comes with the definition of a virtual logarithm. From Dirichlet’s theorem,
we know that the group of units O∗i of Ki is finitely generated and O∗i ∼= Z/tiZ × Zri where the first
part corresponds to the torsion and ri = ni1 + ni2 − 1 is the unit rank of Ki with ni1 real roots and 2ni2
complex roots for the polynomial fi.

Assuming that determining a system of fundamental units {uij}
ri
j=1 of Oi, the torsion-free part of O∗i

is easy (which is not!), let κi be a root of unity and gij and xi a set of integer exponents such that

ui = κxii

ri∏
j=1

u
gij
ij
,

for i = 1, 2. Then, by taking the logarithm of this expression we would have log(ui) = xi log(κi) +∑ri
j=1 gij log(uij ) (mod `), for i = 1, 2. Note that log(κi) = 0 (mod `) if ` and ti are coprime. Hence, by

substituting the expression of ui in our previous equations, we now have

h1 log(a− bα1) =

r1∑
j=1

g1j log(u1j ) +

m∑
j=1

ej log(γpj ) (mod `)

and

h2 log(a− bα2) =

r2∑
j=1

g2j log(u2j ) +

n∑
j=1

e′j log(γqj ) (mod `).

A relation thus looks like

r1∑
j=1

g1jh
−1
1 log(u1j ) +

m∑
j=1

ejh
−1
1 log(γpj )−

r2∑
j=1

g2jh
−1
2 log(u2j )−

n∑
j=1

e′jh
−1
2 log(γqj ) = 0 (mod `) (4.1)

We introduce the following definition.

89



Definition 21 (Virtual logarithm). Consider the intermediate number fields Ki with class number
hi for i = 1, 2. Let p be an ideal in the factor basis F and let phi = (γp). The virtual logarithm of
the ideal p is given by

vlog(p) = h−1
i log(γp) (mod `).

Similarly, we define the virtual logarithm of fundamental units as

vlog(uij ) = h−1
i log(uij ) (mod `).

Going back to what a relation looks like, Equation 4.1 becomes

r1∑
j=1

g1j vlog(u1j ) +

m∑
j=1

ej vlog(pj)−
r2∑
j=1

g2j vlog(u2j )−
n∑
j=1

e′j vlog(qj) = 0 (mod `).

The unknown values of the linear system of equations formed by the relations are now these virtual
logarithms.

If we want to be able to use the definition above, one must compute hi, find the generators γpj and γqj
and the set of generators of units of infinite order to get the exponents gij for i = 1, 2. All these elements
are computationally hard to obtain. The notion of Schirokauer maps now comes into play to overcome
these difficulties.

Question 51. What are Schirokauer maps?

When selecting the polynomials fi that define the number fields Ki, adding the condition ` - disc(fi)
implies thatKi has no roots of unity of order `. This means that the isomorphism we have from Dirichlet’s
unit theorem implies the following isomorphism

O∗i /(O∗i )` ∼= (Z/`Z)ri .

The goal of the Schirokauer map is to provide an explicit definition of this isomorphism.

Definition 22. Let ` be a prime and Ki a number field with unit rank ri. A Schirokauer map is a
vector of homomorphisms defined as

Λi := (λ1, λ2, · · · , λri) : K∗i /(Ki)
∗` → (Z/`Z)ri .

with full rank on O∗i .

In order to construct the linear algebra system, we need the values (e1, · · · , em, g11
, · · · , g1r1

) on one
side and (e′1, · · · , e′n, g21 , · · · , g2r2

) on the other side. The coefficients ej , e′j are the valuation of the ideals
(a− bαi) at small prime ideals (the ones in the factor basis). The Schirokauer maps Λi are then defined
such that the ri coordinates gij are precisely the coordinates of the Schirokauer map evaluated at the
ideal. In other words, we want

Λi(a− bαi) = (gi1 , gi2 , · · · , giri ),

for i = 1, 2. In order to obtain this, we make the following remark.

Remark 11. The choice of fundamental units and the set of generators of the ideals of the factor basis
is not unique.

Let us consider fixed Schirokauer maps Λi for i = 1, 2. From the remark given just above, one can
then appropriately choose the fundamental units and the generators such that

90



• Λ1(u1j ) = (0, · · · , 0, 1︸︷︷︸
jth

, 0, · · · , 0) and Λ1(γpj ) = (0, 0, · · · , 0).

• Λ2(u2j ) = (0, · · · , 0, 1︸︷︷︸
jth

, 0, · · · , 0) and Λ2(γqj ) = (0, 0, · · · , 0).

Then the evaluation of the Schirokauer map Λ1 at the quantity (a− bα1) gives

Λ1(a− bα1) = Λ(κ1)︸ ︷︷ ︸
=0

+

r1∑
j=1

g1jΛ(u1j ) +
∑
j

ej Λ(γpj )︸ ︷︷ ︸
=0

= (g11
, g12

, · · · , g1r1
)

as expected (and similarly for the other side). Finally, a relation will be expressed as

r1∑
j=1

g1j vlog(u1j ) +
∑
j

ej vlog(pj)−
r2∑
j=1

g2j vlog(u2j )−
∑
j

e′j vlog(qj) = 0 (mod `)

where gij is the jth coordinate of Λi for i = 1, 2. The system of linear additive relations can be represented
as in Table 4.2.

vlog(p1) · · · vlog(q1) · · · vlog(u11
) · · · vlog(u1r1

) vlog(u21
) · · · vlog(u2r2

)

rel(1) e
(1)
1 · · · e

′(1)
1 · · · g

(1)
11

· · · g
(1)
1r1

g
(1)
21

· · · g
(1)
2r2

rel(2) e
(2)
1 · · · e

′(2)
1 · · · g

(2)
11

· · · g
(2)
1r1

g
(2)
21

· · · g
(2)
2r2

... ︸ ︷︷ ︸
Schirokauer maps

Table 4.2: Representation of the matrix of relations used for the linear algebra step.

Concretely we now need two Schirokauer maps Λ1 and Λ2 each being a vector of ri homomorphisms.

Question 52. How are Schirokauer maps defined explicitly?

Schirokauer proposed a map that satisfies the definition given above and moreover that is fast to evaluate.
Recall that a Schirokauer map is a vector of homomorphisms defined as

Λ := (λ1, λ2, · · · , λri) : K∗i /(Ki)
∗` → (Z/`Z)ri .

Let us consider an element z ∈ K∗i such that its denominator is coprime to `. Moreover, let fi =
∏
j fij

(mod `) assuming all the fij are distinct. This is very likely when ` is large enough. By the Chinese
Remainder Theorem, we have that

(Z/`Z)[x]/(fi) ∼=
∏
j

(Z/`Z)[x]/(fij ).

Consider X = lcm(`deg fij −1). Then by Fermat’s little theorem, we have zX (mod `) = 1 ∈ Z/`Z[x]/(fi).
Let us consider instead the quantity zX (mod `2) in (Z/`2Z)[x]/(fi). Because zX − 1 ≡ 0 (mod `), we
can re-write

zX − 1 ≡ (0 (mod `)) (mod `2)

and thus
zX ≡ 1 + `S(z) (mod `2).

The map S in the equivalence above can be written as

91



S : K∗i /(K
∗
i )` → (Z/`Z)[x]/(fi)

z 7→ zX−1
` (mod `) := S(z).

It is thus a polynomial in x with coefficients in Z/`Z and can be expressed as S(z) = s0 + s1x + · · · +
sd−1x

d−1 with si ∈ Z/`Z, where d is the degree of fi. Finally, we can compute the evaluation of the λi
in z ∈ K∗i by choosing ri coefficients of the polynomial S, i.e., we get λi(z) = sj ∈ Z/`Z (i and j not
necessarily equal).

Remark 12. • To compute the evaluation of the Λi, one can take any ri coefficients among the
deg fi − 1 ones of S or even ri independent linear combinations of them.

• This map suggested by Schirokauer is the only known choice of Λ where the evaluation is efficient
for any number field Ki.

• The definition of Λi depends on the representation of the number field Ki.

Question 53. How can Schirokauer maps be used in the Tower setup?

A rather simple trick allows us to consider Schirokauer maps in TNFS by using their definition from
the non-tower context with a more “global” input number field.

More precisely, recall that a Schirokauer map is any morphism from K∗i → (Z/`Z)ri where Ki is a
number field and ri its unit rank. In the classical NFS setup, Ki is simply an extension of Q, whereas in
the Tower setup, Ki is an extension of Q(ι).

It is then possible to define a Schirokauer map in TNFS by first defining an isomorphism from the
intermediate fields Ki = Q(ι, αi) to a number field KFi of degree deg h×deg fi and then using a classical
Schirokauer map Λclassical from the latter to (Z/`Z)ri . In other words, we define the map Λi as

Λi : K∗i /(Ki)
∗` '−→ K∗Fi/(KFi)

∗` → (Z/`Z)ri .

The field KFi is defined as KFi = Q[X]/(Fi) where Fi is a polynomial of degree deg h× deg fi. Such an
isomorphism is not hard to find and will be detailed in Chapter 5. Note that since we have an isomorphism
between Ki and KFi , the rank of units remains the same. Finally, the map

Λclassical : K∗Fi/(KFi)
∗` → (Z/`Z)ri

is simply a Schirokauer map as described above in the classical non-tower setup.

4.3 Focus on the relation collection
Now that we have presented the Tower Number Field Sieve algorithm in its generality, we focus on the
relation collection step. Indeed, collecting relations in TNFS requires sieving in dimensions greater than
2 due to the shape of φ, in particular the number of coefficients involved. We start by introducing the
special-q setup and then focus on the relation collection step.

4.3.1 The special-q setup
The relation collection phase looks at a set of linear polynomials φ(x, ι) = a(ι)− b(ι)x ∈ R[x] where a, b
are polynomials of degree deg h− 1 with deg h = η and bounded coefficients, and tries to identify which
are going to produce doubly-smooth norms, i.e., for which pair (a(ι), b(ι))) we have N1 (a(ι)− b(ι)α1)
and N2 (a(ι)− b(ι)α2) factor into small primes. To reduce the time of the sieving stage, Pollard [Pol93]
suggested to divide the set of all polynomials φ, commonly called the search space, into multiple subsets.
This task also requires a large amount of memory and Pollard’s idea allows to parallelize the process,
thus improving practical computation time. This corresponds to the so-called special-q method. This
method regroups polynomials into groups such that φ(α1, ι) (or φ(α2, ι) depending on whether we put
the special-q on the f1-side or the f2-side) share a common factor: the ideal Q. Thus, when talking about
sieving algorithm, we usually consider a fixed special-q Q, and sieve the corresponding subset.

Let φ denote the (row-) vector of coefficients of the polynomial φ(x, ι), i.e., the vector

φ = (a0, a1, · · · , aη−1, b0, b1, · · · , bη−1) ∈ Z2η.

92



Question 54. How to characterize divisibility by a prime ideal Q?

Let us consider a special-q ideal Q of degree 1 in Ki of the form

Q = 〈q, ι− ρι, x− ρx〉,

where q is a prime number, ρι is a root of h modulo q, and ρx is a root of fi modulo q. One could also
consider ideals of degree greater than 1, but special-q of degree 1 are the most common among ideals of
bounded norms and thus we restrict to this case.

Proposition 2. The Q-lattice LQ is the set of polynomials φ such that the corresponding principal ideal
in Ki is divisible by Q.

Making Proposition 1 explicit allows to express the latter as follows.

LQ = {(a0, · · · , aη−1, b0, · · · , bη−1) ∈ Z2η :

η−1∑
k=0

(
akι

k − bkιkαi
)
≡ 0 (mod Q)}

where i = 1, 2 depending on the side we consider. A basis BQ of this lattice can be expressed as follows.

(a, b) a0 a1 · · · · · · aη−1 b0 b1 · · · bη−1



(q, 0) q 0 0
(ι− ρι, 0) −ρι 1 0

(ι(ι− ρι), 0) 0 −ρι 1 0
...

. . . . . .
(ιη−2(ι− ρι), 0) −ρι 1

(ρx, 1) ρx 0 1
(ιρx, ι) 0 ρx 0 1

...
. . . . . .

(ιη−1ρx, ι
η−1) ρx 1

= BQ.

The determinant of this lattice is qdeg φh , where φh is an irreducible factor of h (mod p). In our case
φh = ι− ρι because we only consider special-q ideals of degree 1 and so the determinant is simply q. The
lattice dimension is 2η. For example, with η = 3, it is generated by the rows of the following matrix

BQ =


q 0 0 0 0 0
−ρι 1 0 0 0 0

0 −ρι 1 0 0 0
ρx 0 0 1 0 0
0 ρx 0 0 1 0
0 0 ρx 0 0 1

 ,

where the first 3 columns correspond to the coefficients of a(ι) = a0 + a1ι+ a2ι
2, and the last 3 columns

to the coefficients of b(ι) = b0 + b1ι + b2ι
2. For example, the 5th row corresponds to the polynomial

φ5(x, ι) = −ρxι+ ιx, and φ
5

= (0, ρx, 0, 0, 1, 0) is indeed in LQ. The lattice LQ has dimension d = 2η = 6
and determinant q in this example.

Each unit of computation targets one special-q ideal Q and searches for polynomials φ(x, ι) with
φ ∈ LQ leading to relations, i.e., for which both sides are smooth. In order to explore the lattice LQ, we
first LLL-reduce the basis BQ, and then consider linear combinations with small coefficients of these new
basis elements. This allows us to concentrate on number field elements of small norms, thus increasing
the probability of them being smooth. More precisely, let MQ be an LLL-reduced basis of LQ. We study
the (row-) vectors c of coefficients such that

φ = c ·MQ,

potentially leads to a relation. This is done using sieving algorithms.

93



4.3.2 Different algorithms for sieving
Constructing the double-divisibility lattice LQ,p

We focus on vectors c that belong to a sieving region S. In NFS, the sieving region S is traditionally taken
to be an `∞ ball, but in this work we will consider the `2 norm. Section 4.4.2 explains this preference.

In order to efficiently detect the vectors c that give elements of smooth norms, one can perform
an Eratosthenes-like sieving, marking quickly all vectors c in S leading to a norm on the f1-side (or
equivalently on the f2-side) that is divisible by a small prime p. Repeating this sieve for many primes
p allows to detect the most promising vectors φ, those for which the norm is divisible by many small
primes. To do so, we proceed in a similar way as for the divisibility by Q.

Let p be a prime ideal of norm p in Ki of the form

p = 〈p, ι− rι, x− rx〉,

where rι is a root of h modulo p and rx is a root of fi modulo p. The second statement of Proposition 1
can be reformulated for this specific context.

Proposition 3. The principal ideal generated by φ(x, ι) in Ki is divisible by p if and only if φ(rx, rι) ≡ 0
mod p.

Similarly as before, we translate this divisibility property for c. Let Up be the (row-) vector of size
2η corresponding to the modular equation of Proposition 3. More precisely, if we set

Up =
(
1, rι, (r

2
ι mod p), · · · , (rη−1

ι mod p), rx, (rxrι mod p), (rxr
2
ι mod p), · · · , (rxrη−1

ι mod p)
)
,

the divisibility by p is equivalent to the condition φ ·Uᵀ
p ≡ 0 mod p.

Recall that the coefficients of the polynomials φ are obtained from vectors c such that φ = c ·MQ.
Thus taking into account the divisibility by Q, the condition becomes

c ·MQUᵀ
p ≡ 0 mod p,

and we are thus looking for the vectors φ = c ·MQ with the above condition.
The product MQUᵀ

p, reduced modulo p and normalized so that its first coordinate is 1, is expressed
as

MQUᵀ
p ≡ λ (1, α1, α2, . . . , αη−1)

ᵀ
mod p,

with λ > 0. Since MQ and Up are known, the values αi can be explicitly computed. Note that this
assumes the first coordinate is non-zero. Otherwise, one must either adapt the construction of MQ,p

below or skip the ideal during sieving. Finally, the set of vectors c such that c ·MQUᵀ
p ≡ 0 mod p is

represented by the vectors in the lattice LQ,p generated by the rows of the matrix

MQ,p =



p 0 0 0 · · · 0
−α1 1 0 0 · · · 0

−α2 0
. . . 0 · · · 0

... 0 0
. . . 0

−αη−1 0 0 0 · · · 1

 .

In the end, sinceMQ,p is explicitely known, we can compute the coefficients φ = c·MQ of the polynomials
φ. This is possible as soon as we are able tto enumerate the short vectors c in the lattice above.

Cost of constructing MQ,p. The cost of LLL for full rank lattices is given by O(d6 log3(maxi(||bi||2)))
where bi are the basis vectors and d = 2η is the dimension of the lattice. We assume the modular roots of
the polynomials h, f1 and f2 are precomputed. Moreover, the cost of LLL-reducing the lattice generated
by the basis BQ is done only once per special-q, thus we ignore it. Finally the cost of constructing the
basis of the lattice LQ,p narrows down to these operations:

• Constructing the vector Up: d operations; d/2 multiplications + d/2 modular reductions

94



• Compute the product MQUp: 2d2 − d operations: d2 multiplications + d(d− 1) additions.

• Normalization of the coefficients in the vector MQUp: d + 1 operations; 1 modular inverse + d
multiplications.

• LLL-reduce the lattice generated by the basis MQ,p: ≈ d6 log p operations.

In total we thus have d6 log p+ 2d2 + d+ 1 operations to construct the basis MQ,p.

It then remains to enumerate all the vectors in LQ,p of bounded norms, and mark them to remember
that the norms N1 or N2 are divisible by the prime p, which we also remember. Enumerating these
vectors reduces to finding the set LQ,p ∩ S, where S is the sieving region. These vectors correspond to
polynomials φ ∈ R[x] that will lead to potential relations.

Different enumeration techniques exist in the literature which depend on the shape of S and the
dimension d of the lattice in which we sieve. This dimension corresponds to the number of coefficients
in a(ι), b(ι) for TNFS and is usually equal to 2 for NFS since a, b ∈ Z (higher dimensions can also be
considered for NFS). In two dimensions, thus for previous records using NFS, the sieving method of
Franke and Kleinjung [FK05] is very efficient. However, in this chapter, we will focus on methods that
can be used in higher dimensions.

Indeed, in TNFS, the relation collection phase considers vectors in a d-dimensional lattice with d =
dim MQ,p. Taking the polynomials a(ι) and b(ι) of degree deg h − 1 leads to d = 2 × deg h hence
d ≥ 4. There exist two competitive methods in the literature that can be used when d ≥ 3: the transition
vectors method [Gré18] and the recursive hyperplane one [MR21]. We will detail both these algorithms in
Section 4.4.1. These algorithms both use as a sieving space S a d-orthotope. In this chapter, we consider
a new sieving space, a d-sphere. We justify our choice and describe our algorithm in Sections 4.4.2
and 4.4.3.

4.3.3 Other algorithms to find smooth norms
Other algorithms can be used to find relations by detecting whether the norms are doubly-smooth or
not. To do so, these algorithms either find and extract smooth parts of the norms, or completely factors
them. The family of batch algorithms and ECM are examples of such algorithms implemented and used
in factorization and DLP computations.

Batch

Batch algorithms are quasi-linear time algorithms that test the smoothness of a list of integers. Multiple
variants exist depending on the required output. The first two variants take as input the list of integers
and a list of primes up to some bound: batch trial division outputs the list of primes p that divide the
integers and batch smooth part extraction only returns the smooth part of the integers, i.e., the product
of the primes that divide the integers. Finally batch coprime factorization only takes as input the list of
integers and returns the factors of each integer using repeated gcd operations.

In the context of DLP computations, the batch smooth part extraction algorithm is favored since it has
the lowest complexity and is enough to test for potential smooth candidates. More precisely, the algorithm
takes as input a list of prime numbers P = {p1, · · · , pbatch} and a list of integers N = {n1, · · · , nm} and
outputs for each ni ∈ N its smooth part, i.e., the product of its prime factors in P . The algorithm uses
product trees and remainder trees to efficiently compute the gcd(ni,

∏
j pj) for all i. We refer to [Ber08,

Algorithm 2.1] for the complete algorithm.
The batch smooth part extraction has complexity O(M(B) logB) where M(n) is the cost of multi-

plication of integers of size n bits and B is the number of bits of max (
∏
pj ,
∏
ni).

Elliptic Curve Factorization Method

The elliptic curve factorization method [Len87], commonly known as ECM is an elliptic curve-based inte-
ger factorization algorithm that runs in sub-exponential time. The algorithm takes as input a composite
integer n and outputs small factors of n. The algorithm relies on Hasse’s theorem that states that if p is a
prime, then the group order of an elliptic curve over Z/pZ is p+1−t where |t| ≤ 2

√
p. The algorithm picks

a random elliptic curve E(Z/nZ) and a point P on it and computes the scalar multiplication Q = kP

95



where k =
∏
pi for primes pi up to some bound. Let p be one of the factors of n which we want to find.

If the order of the curve E over Z/pZ divides k, then the z-coordinate of the point Q taken mod p is
equal to zero and can thus be recovered by computing gcd(z, n) = p.

The running-time of ECM is O(Lp(1/2,
√

2 + o(1))M(log n)), where p is the smallest prime factor
of n.

4.3.4 Combining three algorithms
Sieving algorithms, batch and ECM are all algorithms used to find algebraic relations. These algorithms
have different properties and in order to have the most efficient relation collection algorithm, one can
combine them as a sequence of filters.

Question 55. How to best combine these three algorithms?

These algorithms have different complexities and properties and thus cannot be used on the same
amount of input norms Ni. Indeed, ECM is for example much more costly than sieving. Hence, applying
it to the total amount of candidate norms Ni is far from optimal.

On the other hand, sieving is a much less costly algorithm per candidate, and thus can be used to
find the small factors (up to a bound pmax) of a large number of structured candidates. This is why the
relation collection step usually starts with a sieving algorithm with input all candidates (a(ι), b(ι))-pairs.

To summarize, sieving algorithms are used to find promising candidates by detecting (a(ι), b(ι)) pairs
for which the corresponding norms Ni are divisible by many small primes. ECM is then used to guarantee
that the norms of these promising candidates are indeed B-smooth by checking the larger prime factors.
Batch smoothness can be added in between sieving and ECM or as a substitution of one of them to
further optimize the overall cost. It is less costly than ECM and thus can be used to pre-select promising
candidates but more costly than sieving and thus cannot be run on the entire set of candidates from
the sieving area S. It extracts prime factors up to a bound pbatch such that pmax < pbatch < B. The
properties of these algorithms are described in Table 4.3.

Properties Sieving Batch ECM
Input candidates Numerous and structured Numerous Few

Prime factors extracted Small Small or medium Large
RAM Very large Large Tiny

Cost per candidate Small Medium High

Table 4.3: Properties of the different relation collection algorithms

The relation collection can thus be seen as a sequence of filters, each taking a certain amount of can-
didates as inputs, and keeping “survivors” based on a criteria. These survivors are then the inputs to the
next filter. The survivors are selected based on the size of the cofactor, which we now define.

Definition 23 (A-cofactor). Let N be a positive integer and consider P =
∏
i pi where the pi are

the prime factors of N extracted by Algorithm A. Then the A-cofactor is

CA(N) =
N

P
.

Remark 13. When A is sieving or ECM, the algorithm returns the primes pi and when A is batch
smoothness, the algorithm directly returns the product P .

For a fixed A-cofactor bound BA, the survivors are the candidates selected if their norm N (or an
approximation of it) satisfies CA(N) ≤ BA. This entire procedure can be summarized in Figure 4.3.

Remark 14. The bounds BA are not smoothness bounds. However, they allow to select promising
candidates. Indeed, if the cofactor of a norm is small, the probability of the norm being smooth is higher.

96



Batch
up to pbatch

Sieving
up to pmax

ECM

Keeping batch-survivors
if Cbatch ≤ Bbatch.

Keeping sieve-survivors
if Csieve ≤ Bsieve.

RelationsCandidates
from S

Figure 4.3: Sequence of algorithms for relation collection.

Finally, the complete relation collection algorithm is given by Algorithm 8.

Algorithm 8 Relation collection for a given special-q with sieving, batch and ECM
Input: A prime ideal Q, a sieving region S
Output: A list of relations.
1: Construct the lattice LQ and LLL-reduce it.
2: for each prime ideal p in K1 (or K2) up to pmax do
3: Construct the lattice LQ,p

4: Enumerate all vectors in LQ,p ∩ S.
5: For each vector enumerated, keep track of the size of the factors p with a sieving table.
6: For promising vectors, for which the product of the factors p is large, compute approximations of

the norms N1, N2 and identify vectors with sieve-cofactor smaller than Bsiev. They are called sieve-
survivors.

7: Remove duplicates.
8: Run batch algorithm with input the norms N1 and N2 (this time computed exactly) of the sieve-

survivors and primes up to pbatch. Keep batch-survivors whose batch-cofactor is smaller than Bbatch.
9: Run ECM on the batch-survivors.

10: return Vectors with doubly-B-smooth norms which give relations as selected by ECM.

Technical details of Algorithm 8 will be given and illustrated in Chapter 5 with our concrete 521-bit
computation. One can note that line 7 of Algorithm 8 removes duplicate relations. We now explain what
they are and how we remove them.

4.3.5 Filtering through equivalent relations
When sieving through all the (a(ι), b(ι))-pairs it is sometimes the case that two pairs (a(ι), b(ι)) and
(a′(ι), b′(ι)) will provide the same relation, i.e., two linear equations that provide the same information
on the virtual logarithms of the elements of the factor basis involved.

Identifying and removing duplicates is common in factoring and DLP computations. Let us start by
identifying three different types of duplicates. Because this definition applies in both the classical NFS
context and TNFS, we will use the terminology (a, b) to either define a classical (a, b) ∈ Z2 pair in NFS
or (a(ι), b(ι)) ∈ R[x] in TNFS.

Definition 24 (Duplicates). A duplicate relation refers to a pair (a, b) such that there exists another
pair (a′, b′) with a′ 6= a and b′ 6= b that leads to the same relation. We distinguish three types of
duplicates:

• We refer to special-q-duplicates when a relation with ideal factorization (a+ bαi)Oi =
∏
i p
ei
i

involves several prime ideals pi that occur in the set of special-q’s considered. In other words,
more than one special-q unit computation provide the same relation.

• If (a, b) generates a relation for a fixed special-q, then a Kh-unit-duplicate refers to the pair

97



(ua, ub) which gives the same relation for u ∈ O∗Kh , for u small enough.

• Similarly, if (a, b) generates a relation for a fixed special-q, then a ζ2-duplicate refers to the
pair (λa, λb) which gives the same relation for λ ∈ OKh \ O∗Kh , for λ small enough.

Remark 15. The special-q duplicates are considered over the entire set of relations, meaning for all
special-q considered, whereas the other two types of duplicates concern a fixed special-q. The methods to
remove them thus differ.

We now take a closer look at duplicates and how they are dealt with in NFS and TNFS.

Question 56. Why do we need to remove duplicates?

Duplicate relations generate nearly identical lines in the matrix of the linear system of equations
that needs to be solved in the linear algebra step. As the cost of solving the system is a function of its
dimension, we want to get rid of all the unnecessary lines.

Moreover, obtaining a valid relation is costly. Indeed, as can be seen in Algorithm 8, outputting a
valid relation implied computing norms, running batch smoothness and ECM algorithms over promising
candidates, ... etc. In order to minimize the cost of these computations, the number of input candidates
should be minimal and thus exclude all possibly identifiable duplicates.

Question 57. When do we remove duplicates?

In theory, a simple solution would be to remove duplicates just before solving the linear system, i.e.,
during the filtering step. Indeed, the matrix is encoded as a list of relations represented as a list of prime
ideal factors for each relation. It would then be enough to simply remove identical lines in this file before
the linear algebra step.

However, in practice generating duplicate relations is costly as we mentioned before. More precisely,
duplicates generate more hits during the enumeration of the vectors in LQ,p ∩ S (line 4 in Algorithm 8),
the size of the input to the batch algorithm is larger with duplicate relations (more sieve-survivors for
which it was necessary to compute exact norms, line 8 in Algorithm 8) and this finally results in more
batch-survivors and hence a more costly ECM algorithm (line 9 in Algorithm 8). It is thus convenient to
get rid of the duplicates that can be identified as fast as possible. However, the same strategy cannot be
applied for each type of duplicates.

Indeed, the special-q duplicates can only be detected once we know the factorization of the norms.
Moreover, special-q computation units are often run in parallel and thus there is little hope to be able to
detect any special-q duplicates before the end of the relation collection phase. These duplicates are thus
removed during the filtering step.

On the other hand, Kh-unit-duplicates and ζ2-duplicates are “local” to a special-q and can be detected
at an earlier stage. For the latter, we thus have a trade-off between the cost of the different steps in the
relation collection algorithm and the cost of analyzing whether a pair (a, b) yields a duplicate relation.
In our Algorithm 8, we chose to remove duplicates before running the batch algorithm.

We now focus on the methods to remove Kh-unit-duplicates and ζ2-duplicates during the relation
collection step.

Question 58. How do we identify and remove duplicates?

A classical trick used in NFS is to reduce the search space by enforcing a positive sign to the first
coordinate a. Indeed, when looking at Kh-unit-duplicates, we are concerned with elements u ∈ O∗Kh and
in the classical NFS setup, O∗Kh = Z∗ = {−1, 1}. By enforcing a > 0, we thus reduce the search space by
a factor 2 and avoid all unit-duplicates.

The situation is more complicated in TNFS as the number of units is greater than 2. It is still possible
to restrict to positive coefficients in order to avoid duplicates resulting from the units {±1} and we will
see in Section 4.4 that the enumeration algorithm indeed only considers half of the vectors in LQ,p ∩ S.
However, we are left with the following open question.

98



Open Question 2. Is there a systematic way to identify and thus remove duplicates generated from
units other than ±1?

The difficulty of answering this question comes not only from the large number of units that must be
considered but also from the fact that the units must be small enough in order to produce a relation.
Indeed, if u is too large with respect to the sizes of a and b, the factors in the norms of (ua, ub) will
exceed the smoothness bound.

Before giving more details on how we deal with these problematic Kh-unit-duplicates and the ζ2-
duplicates, we give our methodology to identify them. We remind the reader that removing duplicates
happens before the batch smoothness and thus we are looking at the set of sieve-survivors.

Our strategy to identify Kh-unit-duplicates and ζ2-duplicates.
For each pair (a, b) resulting in a sieve-survivor, we compute the quantity

k :=
a

b
(mod h) ∈ Kh,

and store the value k in a hash table. If (a, b) and (a′, b′) are either Kh-unit-dupicates or ζ2-duplicates,
then they will have the same index k. The hash table allows us to quickly identify if a given pair (a′, b′)
is a duplicate of a previously seen (a, b) pair.

Remark 16. This method is done “locally” for every special-q. Indeed, one could think of adapting the
idea of a general hash table regrouping relations from every special-q considered but the memory cost
would be exceedingly high.

This method also justifies the choice of where in Algorithm 8 we test for duplicates. Indeed, computing
a/b (mod h) is not cost-free thus we want to avoid having to compute k for every pair (a, b) outputted
by the enumeration algorithm. It is however less costly than computing an exact norm.

However, the method brings forth the following issue. Duplicates can be seen as an equivalence
class for which we want to select a unique representative. This representative of the class should be the
“smallest” pair (a, b), meaning the (a, b)-pair which leads to the smallest norms. The method given above
does not necessarily keep the “smallest” pair. Indeed, if the pair (λa, λb) for λ ∈ OKh is already in the
hash table, then if the algorithm sees the pair (a, b) it will discard it and keep (λa, λb).

Question 59. Why do we want to keep the “smallest” pair?

A larger (a, b)-pair adds non-zero coefficients in the matrix of the linear system of relations and thus
slows down the linear algebra step. Indeed, considering the (λa, λb)-pair, we have

Ni(λa, λb) = Ni(a, b)NKh(λ)

for i = 1, 2 with the additional term NKh(λ) with respect to the (a, b)-pair. This additional term yields
extra ideals in the prime ideal decomposition, thus non-zero coefficients in the matrix. We illustrate this
with a small example in NFS.

Example 3. Let (a, b) and (2a, 2b) be two pairs of integers that lead to the same relation. Then, looking
at the f1-side we have

N1(2a, 2b) = f1(2b/2a)(2b)deg f1 = N1(a, b)2deg f1 .

We see that the additional 2deg f1 appears in the norm and thus prime ideals over 2 will appear in the
factorization of the ideals and add non-zero coefficients to the matrix.

The removal of special-q duplicates is also easier when the representative of a duplicate class is in its
canonic form. Indeed, recall that special-q duplicates are removed by simply comparing the lines in the
file that encodes the relations. Thus if two different special-q’s produce the same relation but each keep a
different representative, say (a, b) for one and (λa, λb) for the other, then their prime ideal decomposition
will differ by some factors corresponding to NKh(λ) and thus the duplicate will be kept.

99



Question 60. How can one identify the “smallest” (a, b)-pair in a ζ2-duplicates class of equivalence?

The most intuitive idea is to consider the notion of a primitive pair.

Definition 25. A pair (a, b) is primitive if there exists no λ ∈ OKh \ O∗Kh such that a = λa′ and
b = λb′ with a′, b′ ∈ OKh .

In NFS, we will keep the (a, b)-pairs such that gcd(a, b) = 1. The situation is more problematic in
TNFS as the notion of gcd for a(ι) and b(ι) is not well-defined (the gcd exist at the level of ideals). We
will thus detect non-primitive pairs by computing the gcd of their norms: if gcd(N1(a, b), N2(a, b)) = 1,
then the (a, b)-pair is primitive. Indeed if one considers (λa, λb) which is clearly non-primitive, then we
have

gcd (N1(λa, λb), N2(λa, λb)) ≥ NKh(λ)min(deg f1,deg f2) 6= 1.

Because we have stored and compared (a, b)-pairs in our hash table, we are left with a unique represen-
tative per class. However, as mentioned above, we cannot be certain that this pair is primitive. Indeed,
the method that computes the indices k keeps the first pair it encounters with that index and ignores all
the following regardless of their primitiveness. Hence, it remains to check whether our representative is
primitive and if not, make it so.

After having removed the Kh-unit duplicates and ζ2-duplicates as explained above, we thus run the
following algorithm on each sieve-survivor.

Algorithm 9 Primitive representative for each class of duplicates
Input: (a, b)-pair corresponding to a sieve-survivor
Output: primitive (a, b)-pair corresponding to a sieve-survivor or Fail
1: Compute gcd(N1(a, b), N2(a, b))
2: if gcd(N1(a, b), N2(a, b)) = 1 then
3: Return (a, b)-pair.
4: else
5: for each prime `| gcd(N1(a, b), N2(a, b)) do
6: Try to find an element β in OKh of norm ` such that a/β and b/β are in OKh .
7: if Such a value β is found then
8: a← a/β and b← b/β
9: Recompute gcd(N1(a, b), N2(a, b))

10: if gcd(N1(a, b), N2(a, b)) = 1 then
11: Return new (a, b)-pair
12: else
13: Move to next prime `
14: else
15: Return Fail

Remark 17. A few comments can be made on the above algorithm.

• In Algorithm 9 we use the fact that if gcd(N1(a, b), N2(a, b)) = 1, then the (a, b)-pair is primitive. We
actually have an equivalence if the number field Kh is principal. In particular, in our computation
described in Chapter 5, the field Kh is principal which ensures we do not throw away too many
relations by using Algorithm 9.

• The elements of Kh of norm ` are hardcoded in our code for our specific computation for primes `
up to 43.

• If for a given (a, b)-pair, once we have reached ` = 43 and the gcd is still not 1, we simply remove
the relation. Therefore the algorithm may still fail, even though Kh is principal.

100



• Finding the corresponding primitive pair can be done in an easier way with PARI or Sage by solving
norm equations to find β in line 7. We avoid this in our code to minimize the dependencies to other
libraries. Improving this algorithm and making it robust to non-principal Kh is left for future work.

We have seen how to detect ζ2-duplicates, keep a unique representative and make sure that the
representative is in a primitive form. Unfortunately, Algorithm 9 does not work for finding a unique
representative with respect to Kh-unit duplicates. Indeed, if γ is a unit, the quantity NKh(γ) equals to
1. This naturally brings the following question.

Question 61. How can one find the “smallest” (a, b)-pair in a Kh-unit-duplicates class of equivalence?

We simply don’t find a unique representative, and rely on the prime ideal decomposition which is unique
in an equivalence class of Kh-unit duplicates.

4.4 Relation collection with lattice enumeration
In this work, we use an enumeration algorithm for Step 4 of Algorithm 8 where we consider a d-sphere
as sieving region instead of a d-orthotope like existing methods. We use lattice enumeration techniques
to efficiently obtain the set LQ,p ∩ S. We will use the notation S = Sd(R) to indicate we are working in
a d-sphere of radius R or simply Sd to lighten the notation when possible.

4.4.1 Existing algorithms to enumerate LQ,p ∩ S
We start by giving a short refresher of two other recent competitive methods that can be used when
d ≥ 3: the transition vectors method [Gré18] and the recursive hyperplane one [MR21].

Transition vectors for lattice sieving in [Gré18]. Grémy suggests a sieving algorithm that is
inspired by Franke-Kleinjung’s algorithm in dimension 2 but can be extended to higher dimensions.
Let S be the sieving space considered, in this case, a d-orthotope defined as the product of intervals
S = [Hm

0 , H
M
0 [× · · · × [Hm

d−1, H
M
d−1[ for fixed bounds Hm

k , H
M
k .

The key notion used by Grémy to enumerate vectors of a lattice L in higher dimensions is the notion
of transition-vectors, allowing to jump from vector to vector in order to reach all elements in LQ,p ∩ S.
The transition-vectors are divided into d subsets T1, · · · , Td, with Tk the set of k-transition-vectors for
k = 1, · · · , d. The latter have a non-zero k-coordinate and the last d− k coordinates all equal to 0. The
algorithm starts from (0, 0, · · · , 0) ∈ LQ,p and enumerates all vectors in LQ,p∩S by adding or subtracting
transition-vectors. It starts with vectors of T1 until it reaches the edges of S, then looks at additions (or
subtractions) of vectors of T2 etc, increasing from 1 to d step by step.

More precisely, a k-transition vector t is a non-zero vector of the lattice L such that there exists vectors
v and v′ in L∩S satisfying v′ = v+ t with the following two conditions: the last d− k coordinates of v
and v′ are the same, and the coordinate v′k is the smallest possible value greater than vk. The addition
(similarly subtraction) of k transition-vectors is illustrated below.

v + t = (v1, v2, · · · , vk, vk+1, · · · , vd)
+ (∗, ∗, · · · , ∗, 0, · · · , 0)

= v′ = (v′1, v′2, · · · , v′k, vk+1, · · · , vd)

We summarize the enumeration process in Algorithm 10 adapted from [Gré18]. In this description,
we assume we are given a complete set of all transition-vectors T = {Tk}dk=1. For simplicity, we assume
that all the intervals forming the sieving space are of the form [−H,H] for some bound H. We denote
the coordinates of the vector being enumerated as v = (v1, v2, · · · , vd). The algorithm takes as input a
lattice LQ,p of dimension d and a sieving region S. It returns the list L of all elements in LQ,p ∩ S. The
algorithm proceeds with recursive calls to the function enum() for decreasing values of k.

Producing the entire set T is not possible in most cases, and thus the notion of transition-vectors is
relaxed into nearly-transition-vectors, which serves a similar purpose. This variant is effective, albeit no
longer reaches all vectors. A fall-back strategy is then considered when the algorithm fails to find an
appropriate k-nearly-transition vector. Details are given in [Gré18].

Scaling up to higher dimensions. In dimension 4, this method seems to have sufficient prospects of
success. However, even with the relaxed variant, experiments ran in dimension 6 in [Gré18] point to the

101



Algorithm 10 Simplified recursive enumeration algorithm from [Gré18]
Input: a lattice L of dimension d, a sieving region S.
Output: list L of vectors in L ∩ S

def enum(v = (v1, · · · , vd) ∈ S, k)
1: vinit ← (v1, · · · , vd)
2: while vk < H do
3: if k > 1 then
4: enum(v, k − 1)
5: Find t← k-transition vector ∈ Tk such that v + t ∈ S
6: v← v + t
7: Add v to L
8: v← vinit
9: while vk ≥ −H do

10: if k > 1 then
11: enum(v, k − 1)
12: Find t← k-transition vector such that v− t ∈ S
13: v← v− t
14: Add v to L
Run:
L = {(0, · · · , 0)}
Get set T = (T1, T2, · · · , Td) of transition vectors from oracle O(LQ,p,S).
Run enum((0, 0, · · · , 0), d)
Return L.

limits of this method due to the poor quality of the nearly-transition-vectors and the number of calls
required to the dedicated fall-back strategy. [Gré18] concluded that “using cuboid search is probably a
too hard constraint that implies the hardness or even an impossibility for the sieving process”.

Recursive lattice sieving through hyperplanes in [MR21]. McGuire and Robinson also proposed
an enumeration algorithm in dimension 3 or higher. The sieving area being considered is a d-orthotope
S = [0, H[×[−H,H] · · · × [−H,H[ for a fixed bound H. In dimension 3, it corresponds to a rectangular
parallelepiped. The goal is to efficiently enumerate all the vectors in LQ,p ∩ S as explained previously.

The main idea consists in dividing the search space into hyperplanes and enumerate in each of those
hyperplanes. In order to obtain a fast sieving algorithm, the authors minimize the number of hyperplanes
to visit by adequately choosing a “ground” hyperplane and then considering translations of it.

More precisely, in dimension 3 the “ground” plane G0 is defined as a plane spanned by the two shortest
vectors of LQ,p, namely v1,v2 through the origin, to which we subtract multiples of v3 until it does not
intersect S anymore. Because of the small dimension of the lattice considered, these shortest vectors
can easily be found using LLL. One then enumerates every point in G0 ∩ S before moving to the next
translated plane: G1 = G0 + v3, G2 = G0 + 2v3, · · · , Gk = G0 + kv3 until a k is reached such that
Gk ∩ S = ∅. For each translated plane, one enumerates points in Gk ∩ S.

Question 62. How to enumerate in a hyperplane Gk?

The authors use integer linear programming to find a first point p0 ∈ Gk ∩ S. Once p0 is found (if it
exists), the other points pi are iteratively reached by adding multiples of v1 and v2, as long as points
remain in S.

Pseudo-code for dimension three is given in [MR21] for both the enumeration process and the linear
programming step. We write in Algorithm 11 a pseudo-code of our understanding of how their method
can be adapted in dimension d. The recursive function enum() takes as input a d-dimensional sieving
space S, and the LLL-reduced basis of the lattice LQ,p of same dimension.

As we understand it, the McGuire and Robinson’s short vectors serve a similar purpose as Grémy’s

102



Algorithm 11 Recursive version of enumeration algorithm from [MR21]
Input: the basis of a lattice L of dimension d, a sieving region S.
Output: list L of vectors in L ∩ S

def enum(d, S, [b1, b2, · · · , bd])
1: L = {}
2: if d 6= 1 then
3: k = 0
4: P = plane(0,b1,b2, · · · ,bd−1)
5: cmax = max{c ∈ N : S ∩ (P − c · bd) 6= ∅}
6: G0 = P − cmax · bd
7: while Gk ∩ S 6= ∅ do
8: L′ ← enum(d− 1, Gk ∩ S, [b1,b2, · · · ,bd−1])
9: Append L′ to L

10: k = k + 1
11: Gk+1 = Gk + bd
12: if d = 1 then
13: Find p0 ∈ plane(0,b1) ∩ S with linear programming
14: Add p0 to L
15: cmax = max{c ∈ N : S ∩ (p0 − c · b1) 6= ∅}
16: Define P0 = p0 − cmax · b1

17: while P0 ∩ S 6= ∅ do
18: P0 = P0 + b1

19: Add P0 to L
20: return L.

transition-vectors: namely, the aim is to choose relevant vectors to add (or subtract) to others while
being as exhaustive in the search as possible. Similarly to Grémy’s work, the enumeration here is not
completely exhaustive. Indeed, in [MR21], the authors report consistently missing around 1.8 % of the
lattice points per special-q due to corner cases.

Question 63. Why is this faster than [Gré18]?

The main speed gain of this algorithm is not so much in the enumeration done in each translated hyper-
plane, but in the number of hyperplanes that are being considered. Indeed, taking the largest vectors of
the basis for the direction of the hyperplane translations allows to minimize the number of hyperplanes
required to cover S.

Scaling up to higher dimensions. The authors only present their algorithm in dimension 3. Although
they state that their algorithm can be extended to higher dimension, we wonder whether it remains
efficient when d ≥ 3. One difficulty we see is finding cmax, which increases with the dimension d and can
become too expensive very quickly. Indeed, finding cmax can be done using integer linear programming,
which is doable in low dimension but should be very hard (or at least more costly than desired) as it
grows.

4.4.2 Why do we choose a d-sphere?
Let d be the dimension of the lattice being considered. We explain here that as the dimension d of the
sieving space increases, it is more efficient to choose a d-sphere.

Consider a d-sphere Sd and a d-orthotope Cd of equal volumes. The number of points to enumerate is
thus the same if we consider S to be Sd or Cd. Let us assume that the size of the norms is only dependent
on the size of the coordinates of the vector enumerated in LQ,p ∩ S. We will now argue that considering
a d-sphere instead of a d-orthotope leads to smaller norms.

Recall that the volume of a d-sphere is given by

103



R

D

Figure 4.4: Hypercube and d-sphere for d = 3 of equal volume.

Vd(R) =
πd/2Rd

Γ(d/2 + 1)
,

and the volume of a d-hypercube of fixed length L is Ld. We use a d-hypercube instead of a d-orthotope
to simplify the presentation. In order to have the same sieving volume, i.e., Vd(R) = Ld we must have

R =
L · Γ(d/2 + 1)1/d

√
π

.

For the hypercube, the length of half the diagonal (from the center) is given by D = L
2 ·
√
d. The distance

between the summits of the hypercube and the d-sphere, the latter is expressed as

L

2

√
d−R =

L

2

√
d− L · Γ(d/2 + 1)1/d

√
π

,

and

lim
d→∞

(
L

2

√
d− L · Γ(d/2 + 1)1/d

√
π

)
=∞.

Let Pd = Cd \ Sd and Qd = Sd \Cd. Because we are considering Sd and Cd of equal volume, for d→∞,
the quantity D − R also tends to infinity as seen above. This quantity represents an upper bound on
the distance from the origin to points in Pd, which would correspond to the largest norms. Hence, if we
want to consider smaller norms, when d→∞ it is more advantageous to consider points in Qd, and thus
choosing a d-sphere as sieving area rather than a d-orthotope is a more suitable choice. This is illustrated
in Figure 4.4.

4.4.3 Schnorr-Euchner’s enumeration algorithm for TNFS
We now focus on the enumeration part, i.e., the computation of LQ,p ∩ Sd(R). The algorithm follows
Schnorr-Euchner’s enumeration algorithm [SE94]. We have chosen to follow Schnorr-Euchner’s enumera-
tion strategy instead of the Fincke-Pohst-Kannan algorithm [FP85, Kan83] as it appeared more efficient
operation-wise. We briefly describe Schnorr-Euchner’s enumeration algorithm and refer to Chapter 2 for
more details.

Description for TNFS

In order to find potential relations, one must enumerate all the vectors in LQ,p of bounded norms.
These vectors, which we denote φ, correspond to the coordinates of the polynomials φ(x, ι), namely

104



(a0, · · · , aη−1, b0, · · · , bη−1). Recall that the lattice LQ,p translates the notion of divisibility by an ideal p
and a special-q ideal Q. By enumerating vectors in LQ,p ∩ Sd(R) for many different p (each generating a
different LQ,p) one can identify vectors that are divisible by many p’s and thus more likely to correspond
to B-smooth norms.

Let us fix p and a special-q ideal Q. The lattice LQ,p is constructed as explained previously. Given
an LLL-reduced basis {b1, · · · ,bd} of LQ,p and the radius R of a d-sphere Sd which corresponds to the
sieving area, one can use Schnorr-Euchner’s algorithm to find all these vectors.

Brief description of the algorithm. Recall that the algorithm constructs an enumeration tree where
the leaves correspond to the vectors c =

∑d
i=1 vibi that satisfies ||c||2 ≤ R2. Thus the leaves of the tree

correspond to our vectors in LQ,p ∩ Sd.
In order to search for these vectors, the enumeration method works in projected lattices and for a

given level k in the tree, the projected vectors are expressed as

πk(c) =

d∑
j=1

(vj +

d∑
i=j+1

(µi,jvi)πk(b∗j )

 =

d∑
j=k

(vj +

d∑
i=j+1

(µi,jvi)b∗j

 ,

where the vectors b∗i correspond to the Gram-Schmidt orthogonalization of the basis vectors bi and the
µi,j are the Gram-Schmidt coefficients.

At each level k of the tree, the algorithm verifies that ||πk(c)||2 ≤ R2 which can be reduced to
enumerating admissible values of vk that lie in a bounded interval. The algorithm visits only half the
nodes since if c ∈ LQ,p then −c ∈ LQ,p.

Efficiently computing the vectors c = v ·MQ,p. The algorithm works with the coefficient vectors
v = (v1, · · · , vd). However, in the end, we do not want the combinations v, but the vectors c = v ·MQ,p =∑d
i=1 vibi. Computing these vectors c can either be done naively, at the leaf level by explicitly computing

c =
∑d
i=1 vibi for each leaf, or one can keep track of a partial sum

∑d
i=t vibi for a fixed value t chosen

as input to the algorithm and update the quantity vibi once a vi is changed during the algorithm, i.e.,
once the algorithm visits a new internal node in levels t to d. We opt for the second option as it reduces
the overall cost of enumeration.

More precisely, let common_part =
∑d
i=t vibi, where each vibi is stored in a variable. Each time the

algorithm visits a new internal node, thus updates vi for a given i = t, · · · , d, the algorithm updates
common_part by subtracting the current vibi, computing the new vibi with the new value of vi and
adding it back to common_part. Once at the leaf, in order to compute the vector c, it remains to
compute c =

∑t−1
i=1 vibi + common_part.

For most values of p we are concerned about, we use this optimized code with t = 2, thus updating all
values vibi during the algorithm, except at the leaf level, and finally computing c = v1b1 +common_part.
When p becomes large and few leaves are found, it can be less efficient to choose t = 2, and thus one selects
the appropriate t > 2 in order to optimize the number of operations performed for this computation.
More details are given in the Section 4.4.4 below and the pseudo-code for the optimized enumeration
algorithm is given in Algorithm 12.

Remark 18. This optimization makes sense in this specific context where the lattices considered are
of small dimension and often dense (in particular for small primes). This would not translate well for
general lattices of larger dimensions or if only a handful of small vectors are outputted.

4.4.4 Analysis of the enumeration algorithm
We now proceed to analyzing the enumeration algorithm. On the one hand, we want to estimate the cost
of our enumeration algorithm. This implies having an estimate of the number of nodes and leaves in the
enumeration tree. Moreover, this estimate is derived using the Gaussian heuristic. In order to do that,
it is necessary to analyze the input lattice to the enumeration algorithm. Thus, we start by studying the
behaviour of the lattice LQ,p.

The dimensions of the lattice we are considering are small, i.e., precisely 6 in our example in Chapter 5
but plausible dimensions are 4, 6 or 8 for example depending on the degree of the polynomial h. Because

105



Algorithm 12 Optimized enumerating LQ,p ∩ Sd
Input: LLL-reduced basis {b1, · · · ,bd} of LQ,p, radius R of d-sphere Sd, variable t for optimization.
Output: List K of vectors c ∈ LQ,p ∩ Sd(R).
1: Pre-computation: compute all Gram-Schmit coefficients µi,j for i < j and the norms of the Gram-

Schmidt vectors ||b∗i ||2 for all i ≤ d.
2: K ← {}
3: σ ← (0)(d+1)×d, r0 = 0, r1 = 1, · · · , rd = d.
4: ρ1 = ρ2 = ρd+1 = 0 . with ρk = ||πk(c)||2
5: v1 = 1, v2 = · · · = vd = 0
6: c1 = · · · = cd = 0 . with ck =

∑d
i=k+1 µi,kvi

7: w1 = · · · = wd = 0
8: last_nonzero = 1
9: common_part = vtbt + · · ·+ vdbd

10: k = 1
11: while true do
12: ρk = ρk+1 + (vk − ck)

2 ||b∗k||2
13: if ρk ≤ R2 then
14: if k = 1 then
15: c =

∑t−1
i=1 vibi + common_part . opt. computation of c

16: K ← K ∪ c
17: if last_nonzero = 1 then
18: Skip . this generates ζ2-duplicates
19: else
20: if vk > ck then vk ← vk − wk
21: else
22: vk ← vk + wk
23: wk ← wk + 1

24: else
25: k ← k − 1 . we go down the tree
26: rk ← max(rk, rk+1)
27: for i = rk+1 to k + 2 do
28: σi,k ← σi+1,k + viµi,k

29: ck ← −σk+1,k

30: vk = dckc, wk = 1.
31: if k = ` for ` = t, · · · , d then
32: Re-compute common_part by updating v`b`.
33: else
34: k ← k + 1 . going back up the tree.
35: if k = d+ 1 then
36: return K . we find no more solutions
37: rk ← k

106



38: if k ≥ last_nonzero then
39: last_nonzero← k
40: vk ← vk + 1
41: if k = ` for ` = t, · · · , d then
42: Re-compute common_part by updating v`b`.
43: else
44: if vk > ck then vk ← vk − wk
45: if k = ` for ` = t, · · · , d then
46: Re-compute common_part by updating v`b`.
47: else
48: vk ← vk + wk
49: if k = ` for ` = t, · · · , n then
50: Re-compute common_part by updating v`b`.
51: wk ← wk + 1

of these small dimensions, we observed that classical analyzes of lattice reduction algorithms did not hold.
For example, the following ratio ||b∗i+1||2/||b

∗
i ||2 ≥ β was observed in [NS06] for vectors outputted from

a reduction algorithm. The constant β depends on the reduction algorithm considered and in the case
of LLL, we have β = 1/(δ − η2). Sage’s default LLL implementation uses δ = 0.99 and η = 0.501, thus
β = 1.35. This value is obtained for random basis. Our lattices LQ,p are however not random. We thus
experimentally verified that for 6-dimensional lattices, the ratio ||b∗i+1||/||b

∗
i || is smaller than expected,

hence we introduce the following heuristic.

Heuristic 1. For 6-dimensional lattices LQ,p, the ratio ||b∗i+1||/||b
∗
i || ≈ 1.09 on average.

The result was compared to ratios obtained for random bases and bases of ideal lattices. Let us detail
this now. In order to shed more light on the geometry of our LQ,p lattices, we compare this ratio with the
ratio obtained using two similar basis constructions: the Goldstein-Mayer bases, introduced in Chapter 2,
and a constuction from [PS13], which generates cyclotomic ideal lattices.

Comparing to Goldstein-Mayer bases Recall that a Goldstein-Mayer basis is given by the rows of
the following matrix for a prime p and random elements ai < p.


p
a1 1
a2 1
...

. . .
ad−1 1

 .

For increasing values of p, we experimentally verify that for a 6-dimensional lattice, the ratio of norms
||b∗i+1||/||b

∗
i || ≈ 1.13 on average with a standard deviation of 0.24. Recall that for our MQ,p bases, we

had a ratio equal to 1.09 with the same standard deviation around 0.24. A statistical t-test confirms
that the means of both the ratios from the Goldstein-Mayer bases and the MQ,p bases are significantly
different.

Comparing to ideal lattices coming from [PS13]. Instead of using a random basis for a general
lattice, we also look at the generator for ideal lattices proposed in [PS13] and used for the SVP ideal
lattice challenge. The construction is similar to the Goldstein-Mayer lattices but instead of having ai
being randomly generated numbers in [1, p], the coefficients of the first column are powers of a root of
unity of a kth cyclotomic polynomial. In our case, we use k = 7, 9, 14, 18 in order to have a degree 6

107



polynomial. More precisely, the ideal lattice is generated by the rows of the following matrix
p
−a 1
−a2 1
...

. . .
−ad−1 1


with a the root mentioned above and p a prime we vary. Similarly as before, we average over many
values of p and for different k-values that determine the cyclotomic polynomial. On average, we find that
the ratio ||b∗i+1||/||b

∗
i || ≈ 1.06 with a standard deviation of 0.046. A t-test confirms again that we re-

ject the null hypothesis in favor of the alternative hypothesis that the difference in means is not equal to 0.

Going back to the analysis of the enumeration algorithm, we recall the following heuristic introduced
in Chapter 2.

Gaussian heuristic. For a given lattice L and a set S, the number of points in L ∩ S is roughly the
ratio of the volumes, i.e., vol(S)/ vol(L).

This heuristic was suggested to analyze enumeration algorithms in [HS07] and experimentally con-
firmed to be accurate in [GNR10] for random lattices.

Number of leaves. The volume of a full-rank d-dimensional lattice L is given by det(L) =
∏d
i=1 ||b

∗
i ||

and in our case the volume of LQ,p is p. Using the Gaussian heuristic, the number of leaves is thus given
by

Ξleaves =
1

2

vol(Sd(R))

det(L)
=

1

2

Rdπd/2

Γ(d/2 + 1)
∏d
i=1 ||b

∗
i ||

=
Rdπd/2

2Γ(d/2 + 1)p
.

We experimentally verified for the dimension we are interested in, d = 6, that the number of leaves
outputted by our enumeration algorithm is indeed very close to the Gaussian heuristic, see Chapter 5.

Number of nodes. Let Ξk denote the number of nodes at level k which corresponds to the number of
points in πk(LQ,p) ∩ Sk(R). The volume of a projected lattice πk(LQ,p) is

∏d
i=k ||b

∗
i ||. Again, from the

Gaussian heuristic we have

Ξk = |πk(LQ,p) ∩ Sd−k+1(R)| = 1

2

vol(Sd−k+1(R))

vol(πk((LQ,p))
=

1

2

Rd−k+1π(d−k+1)/2

Γ((d− k + 1)/2 + 1)
∏d
i=k ||b

∗
i ||
.

The 1
2 comes from the fact that we consider only half of the tree (see description above). We approximate

the volume of the projected lattice πk(LQ,p) by X ·p(d−k+1)/d, where X depends on Heuristic 1. We then
get

vol(πk(LQ,p)) =

d∏
i=k

||b∗i || = ||b1||d−k+1(1.09)
∑d−1
i=k−1 i = ||b1||d−k+1(1.09)

1
2 (d−k+1)(d+k−2).

Since for k = 1, we know that vol(π1(LQ,p)) = p, we can set ||b1|| = p1/d/(1.09)(
∑d−1
i=1 i)/d. We then have

vol(πk(LQ,p)) = p(d−k+1)/d(1.09)
∑d−1
i=k−1 i−((d−k+1)/d)

∑d−1
i=1 i = p(d−k+1)/d(1.09)

1
2 (d−k+1)(k−1),

and hence X = (1.09)
1
2 (d−k+1)(k−1). We get

Ξk =
1

2

Rd−k+1π(d−k+1)/2

Γ((d− k + 1)/2 + 1)p(d−k+1)/d(1.09)
1
2 (d−k+1)(k−1)

.

Finally, the total number of nodes is Ξ =
∑d
k=1 Ξk. We experimentally verified this for typical 6-

dimensional LQ,p lattices for varying p, see Chapter 5.

108



Running time of enumeration. The running time of the enumeration algorithm is given by the
number of nodes Ξ times the number of operations per node. At each node, the algorithm performs 7
arithmetic operations on average to compute and update the linear combinations v. In addition to looking
for the combinations v, one must also compute the vector c = v·MQ,p =

∑d
i=1 vibi. As mentioned above,

this can either be done naively at the leaf level by explicitely computing c =
∑d
i=1 vibi for each leaf,

which costs 2d2 − 1 extra operations per leaf.
Or, one uses common_part =

∑d
i=t vibi. Each time the algorithm visits a new internal node in the

levels t up to d, thus updates vi for a given i = t, · · · , d, the algorithm performs 4d − 1 operations: in
order to update common_part, we subtract the current vibi (d operations), compute the new vibi (2d− 1
operations) with the new value of vi and add it back to common_part (again, d operations).

Once at the leaf, in order to compute the vector c, it remains to perform (t − 1)(2d − 1) + t − 1
operations, c = v1b1 + · · · + vt−1bt−1 + common_part. In summary, we have for the additional cost of
computing the vector c

Comp c naively = # leaves× (2d2 − 1) = Ξ1(2d2 − 1),

and using common_part,

Comp c opt = (# int. nodest→d × (4d− 1)) + (# leaves× ((t− 1)(2d− 1) + t− 1))

=

(
d∑
i=t

Ξi

)
(4d− 1) + Ξ1((t− 1)(2d− 1) + t− 1).

We experimentally verified that the optimized code results in less operations than the naive one to
compute all the vectors c for all but too large values of p when choosing t = 2. When p becomes too large
and there aren’t many leaves, the optimized code uses more operations than the naive one. One easy way
to resolve this is to increase the value of t in the definition of common_part. However, this occurs when
p is large enough that the predominant cost is in generating the lattice LQ,p and not in the enumeration
algorithm, see Figure 4.5. Finally, the total cost of enumeration on average is thus equal to

Cost enum = 7× Ξ + Comp c opt.

Number of leaves per node. Finally, the number of leaves per node is given by

# leaves
# nodes

=
Ξ1∑d
k=1 Ξk

,

as a function of p. When p is small, the number of leaves per node is high and decreases with p. Indeed,
the probability of a norm being divisible by a small prime is higher than for larger primes. Hence for small
primes, the ratio of leaves with respect to the total number of nodes visited by the enumeration algorithm
is close to 1. This is illustrated in Chapter 5, Figure 5.1 for parameters specific to our computation.

Comparing enumeration and constructing LQ,p. Figure 4.5 illustrates the variation of the number
of operations for the construction of the basis MQ,p for the lattice LQ,p and the enumeration algorithm
for increasing values of p and a fixed special-q. We clearly see that when p is small, the enumeration
algorithm is more costly (in terms of number of operations). However, when p becomes large enough,
constructing the basis MQ,p becomes much more costly. The intersection point varies depending on the
radius R and can be chosen to be close to pmax.

4.4.5 Overall complexity of relation collection
The total cost of Algorithm 8 is the sum of the cost of constructing the lattice LQ,p, the cost of enumerating
in LQ,p∩Sd(R), and the costs of batch smoothness on the sieve-survivors and ECM on the batch-survivors.
In order to optimize the overall complexity, it is important to correctly set the many parameters that
come into play during this step. In particular, one must decide:

1. the size of (many) fixed parameters: the radius R, the smoothness bound B, the range of special-q’s
to consider, the bounds pmax, pbatch.

109



Figure 4.5: Number of operations for enumeration and constructing a basis of LQ,p as a function of p.
This plot illustrates the behaviour of these two costs.

2. the balance between sieving, batch smoothness and ECM based on the size of the cofactors.

A detailed analysis of the effect of the parameters R,B and the range of special-q’s on the total cost of
the relation collection will be given in Chapter 5, Section 5.3.1. More generally, we will discuss our choices
for these parameters in Chapter 5 as they mostly come from experimental observations and testing.

4.5 Comparing with other methods
4.5.1 Comparing with [Gré18]
• Grémy’s algorithm uses a d-orthotope as sieving space, whereas we consider a d-sphere. As explained

previously, we believe that as the dimension increases, it is more efficient to sieve in a d-sphere as
opposed to a d-orthotope. We send the reader back to Section 4.4.2 for a more detailed explanation.

• As the dimension increases, so does the number of nearly-transition vectors required in [Gré18]
for the algorithm to enumerate most of the vectors. These nearly-transition vectors are generated
during the initialization of the enumeration procedure using various strategies.

• Moreover, [Gré18] indicates that in dimension 6, the number of calls to the fall-back strategy is
important, indicating that the nearly-transition-vectors are of poor quality, and thus the algorithm
requires the use of skew-small-vectors (also to be computed).

• Finally, Grémy’s algorithm is not exhaustive in its search of vectors in LQ,p∩S, and as the dimension
increases, in addition to what was mentioned just before, we suspect the percentage of missing
vectors increases.

4.5.2 Comparing with [MR21]
• Similarly as Grémy’s algorithm, this algorithm also uses a d-orthotope as sieving space. We send

the reader back to Section 4.4.2 for a more detailed argumentation.

• The algorithm presented in [MR21] is very similar to the classical enumeration algorithm of Fincke-
Pohst-Kannan (FPK) [FP85, Kan83] adapted to a rectangular sieving region. One important
cost in both FPK and this algorithm is finding the initial point in each plane from which the
enumeration starts. In [MR21], this is done with linear programming. Every time the algorithm
changes hyperplane, an integer linear programming problem must be solved. This does not add much
complexity to the algorithm, but its cost is non-negligible with respect to the rest of the operations
performed, and increases with the dimension. Our algorithm is based on Schnorr-Euchner’s variant

110



which starts its enumeration of a given interval at its center. This avoids the computation of the
edge of the interval at each level as required in FPK or similarly the linear programming cost.

• Moreover, as the dimension grows, so will the number of hyperplanes. Thus, we believe that the
algorithm will struggle to be competitive when the number of hyperplanes becomes too important
and a linear program must be solved for each hyperplane.

• Finally, our algorithm is exhaustive by construction, and thus enumerates every single vector in
LQ,p ∩Sd. As mentioned previously, the algorithm in [MR21] encounters boundary issues when the
planes intersect only the corners of the sieving region. The loss is reasonable in dimension 3 but
may become more and more problematic as the dimension grows.

4.6 Conclusion
In this chapter, we described the overall setup of the TNFS algorithm with a particular emphasis on the
relation collection step. Indeed, this step differs quite significantly from the classical NFS setup as it
requires sieving in higher dimensions than for the latter. We thus proposed a new approach to sieving
by not only considering the `2 norm instead of the previously used `∞ norm, but also by adapting the
known Schnorr-Euchner enumeration algorithm to this context. This new sieving strategy along with
the clarification of technical details such as Schirokauer maps and duplicates allowed us to successfully
implement the TNFS algorithm and perform a discrete logarithm computation with it. Details about the
implementation and the computation are given in the following chapter.

111



112



Chapter 5

An implementation and a 521-bit Fp6
record with TNFS

This chapter describes the first ever implementation of the Tower Number Field Sieve algorithm as well
as the computational details of our discrete logarithm computation in a finite field of 521-bit. Whereas
the theoretical descriptions of the various steps of the algorithm were given in Chapter 4, we focus here
on the technicalities linked to the implementation and the record. We describe the results obtained at
the various stages of the algorithm as well as their execution time. The total computation took 2.8 core
years on a machine with two CPUs Intel Xeon Gold 6130 with 192 GB of RAM. The computation was
performed on the Grid5000 cluster.

In addition to a description of the record, we compare the latter with computations performed with the
classical NFS algorithm for both factoring an integer of the same size and DLP over the same size finite
field. We also compare it with NFS computations with sieving in higher dimensions as done in [GGMT17]
and [MR21]. Finally, we discuss the limits of this algorithm with respect to increasing sizes of finite fields
and difficulties foreseen for much larger computations.

Contents

5.1 Our target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Polynomial selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Collecting relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Adjusting parameters before sieving . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Analyzing the sieving step: enumerating in a lattice . . . . . . . . . . . . 116
5.3.3 Balancing sieving, batch and ECM . . . . . . . . . . . . . . . . . . . . . . 118
5.3.4 From a set of relations to a matrix . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1 Duplicates and filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.2 Schirokauer maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4.3 Solving the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Descent step and discrete logarithm of the target . . . . . . . . . . . . 126
5.6 Comparing with NFS computations . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Size of norms in our TNFS computation . . . . . . . . . . . . . . . . . . . 127
5.6.2 Comparing with factoring with NFS . . . . . . . . . . . . . . . . . . . . . 128
5.6.3 Comparing with DLP with NFS . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.4 Comparing with other high-dimension sieves . . . . . . . . . . . . . . . . . 130

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

113



5.1 Our target
We consider a 521-bit finite field Fpn where p = 0x6fb96ccdf61c1ea3582e57 is a 87-bit prime and n = 6.
The extension degree n is composite with factors η = 3 and κ = 2. The prime p is chosen to be the closest
prime to the 87 first bits of RSA-1024, the 1024-bit integer coming from the RSA Factoring Challenge.
Moreover, we chose as target element in Fp6 an element whose decimals are taken from π, that is

target =(31415926535897932384626433 + 83279502884197169399375105ι

+ 82097494459230781640628620ι2) + x(89986280348253421170679821

+ 48086513282306647093844609ι+ 55058223172535940812848111ι2)

Note that the values of p and of the target are not chosen by us but taken from an outside source which
allows to reinforce the authenticity of our computation.

Now recall from Chapter 1 that the computation of a discrete logarithm in a group can be reduced
to its computation in one of its prime subgroups by Pohlig-Hellman’s reduction.

Question 64. How is this subgroup chosen?

We want to consider a prime order subgroup for which the computation is the hardest. To do so, we will
work modulo ` = p2 − p + 1 = 30c252a90b588491be0a93f6fd11924531a80adb333b, the 174-bit prime
order of the 6th cyclotomic subgroup of the multiplicative group of our target finite field. Indeed, any
other factor of p6− 1, namely p− 1, p+ 1 and p2 + p+ 1, correspond to subfields in which DLP would be
much easier to solve. For example, if ` divides p − 1, the elements considered in DLP belong to F∗p and
solving DLP with NFS in this prime field of 87 bits can be done in nearly negligible time. On the other
hand, the value p2 − p+ 1 does not correspond to any subfields of Fp6 .

Question 65. Why did we choose this target?

The choice of the finite field, more precisely the extension degree, was motivated by the use of such finite
fields in pairing-based protocols. Recall that a pairing takes as inputs points on an elliptic curve defined
over a finite field Fpn . As already discussed in Chapter 3, the security of pairings comes from the balance
between the hardness of DLP on the elliptic curve side and the finite field side.

In [FST10], the authors introduce the notion of pairing-friendly curves, meaning elliptic curves with
small embedding degree n and a large prime-order subgroup. It is further mentioned that to reach a 128-
bit level of security, one must consider an extension field of bitsize around 4000 with n ∈ [6, 10] if ρ = 2
and n ∈ [12, 20] if ρ = 1. The authors then propose a family of (supersingular) elliptic curves [FST10,
Section 3.3] for which the embedding degree is equal to 6, and thus the target group GT of the pairing
is F∗p6 for a prime p. The elliptic curves MNT (with embedding degree 6) are examples of such curves.

For a more recent analysis of pairing-friendly curves, we refer to Guillevic’s blogpost [Gui]. While for
current levels of security we see that n is strictly greater than 6, for ZK-snarks with cycles of curves, 1

MNT-6 curves are widely deployed.
We further chose a finite field size for which a DLP computation seemed possible in reasonable time

and we discuss in Section 5.7 the possibility of extending our computation to larger finite fields.

5.2 Polynomial selection
As explained in Chapter 4, three polynomials with specific characteristics must be chosen for TNFS. The
following polynomials were provided to us by Guillevic after careful consideration of which polynomial
selection method would provide the best polynomials. As explained in Chapter 4, in order to choose
between the Conjugation method or JLSV1, it suffices to compare the size of the norms N1 and N2

for many (a(ι), b(ι))-pairs. Indeed, the parameters of f2 outputted by Conjugation are the same as the
parameters of f1 and f2 outputted by JLSV1 and thus it suffices to compare the norms N1, N2 for the
Conjugation method. Averaging over 105 (a(ι), b(ι))-pairs clearly showed that N1 was much smaller

1A cycle of curves (currently only available with MNT curves) is a pair of pairing-friendly elliptic curves E1, E2 such
that E1 is defined over a finite prime field Fp with prime order r, and E2 is defined over the finite field Fr with order p.

114



than N2, and thus the Conjugation method was finally considered to choose the polynomials. Code to
reproduce these results can be found at https://gitlab.inria.fr/tnfs-alpha/alpha.git.

The choice for h. The polynomial h is of degree η = 3, monic and irreducible modulo p. In our
computation, we use

h(ι) = ι3 − ι+ 1.

This polynomial has the following property: 1/ζ2(Kh) = 0.9009. We could have chosen a polynomial h
of degree η = 2. This would have resulted in a sieving space of dimension 4 instead of 6. However, for
a first large-scale experiment, the goal was to explore the efficiency of sieving in higher dimension, thus
the choice of a degree 3 polynomial. We leave for future work the comparison of a TNFS computation
with a polynomial h of degree 2.

The choices for fi. The polynomials f1, f2 were selected using the Conjugation method. We recall
that this method looks for polynomials of degree κ and 2κ. We use

f1 = x4 + 1,

and
f2 = 11672244015875x2 + 1532885840586x+ 11672244015875.

These polynomials are irreducible over Z[ι][x] and the polynomial f2 corresponds to the irreducible
common factor of these two polynomials, as it is the case for the Conjugation method. As mentioned
in Chapter 4, additional criteria can be taken into account when selecting these polynomials such as
Murphy’s α value [GS21].

5.3 Collecting relations
The algorithm to collect relations in TNFS is described in Algorithm 8 in Chapter 4. We now focus on
specific details related to our computation and our implementation.

5.3.1 Adjusting parameters before sieving
Before starting to collect relations one must fix the many parameters that come into play during Al-
gorithm 8. The computational cost of sieving greatly varies depending on the balance between these
parameters. In particular, one needs to fix a smoothness bound B, a range of special-q’s to consider and
a sieving space, which in our context reduces to choosing the radius R of the 6-dimensional sphere we
sieve with.

Getting enough relations

In order for the linear algebra step of the algorithm to succeed, one must collect enough relations to
construct the linear system of equations. The smoothness bound B gives the number of relations that
are needed for the linear algebra step to succeed, i.e., the required number of relations Ntot corresponds
to 2π(B), where π(x) is the prime counting function. Indeed, the factor basis regroups prime ideals of
O1 and O2 of norm less than B and of degree 1 and thus the size of the factor basis is twice the number
of prime ideals of norm less than B. By Chebotarev density theorem, the latter is given by the counting
function π. A good approximation for the counting function is the logarithmic integral function.

Interestingly enough, two opposite considerations can be made. In theory, we would want slightly
more relations in order to obtain a full-rank matrix. In practice, we require slightly less relations since
some ideals will not be considered in the factorizations of the norms.

Now that we know an approximation of how many relations we need, one must balance the range of
special-q’s, the smoothness bound B and the radius R of the sieving space in order to optimize the total
cost of the sieving step. Let [qmin, qmax] denote the range of special-q to use for sieving.

In order to choose this interval in an optimal way, one must first estimate how many relations are
generated on average from a single special-q of a given size. To do so, one can use the Dickman ρ function
to estimate the probability of smoothness for the norms N1 and N2, as explained in Chapter 3. This allows
us to get an estimate of the number of relations expected from a special-q as a function of B. Using this
estimation, one can then balance the parameters (qmin, R,B) in order to find the optimal combination.
We defined the total cost (of relation collection) in this context to be the number of special-q required

115

https://gitlab.inria.fr/tnfs-alpha/alpha.git


times the computation time for a single special-q. At this early stage, since we are looking at estimations,
the time of sieving for a single special-q is taken to be R6. The volume of a 6-sphere is given by π3

Γ(4) ·R
6

and we ignore the constants at this stage. These parameters influence the total cost of sieving in the
following way.

Impact of R: When choosing a large radius R, one expects to find more relations per special-q since
the sieving space is larger. However, increasing R also increases the cost of enumeration for a given
special-q. Overall for a fixed qmin and B, we observed in our experiments that when R increases, the
total cost increases too. Indeed, when R increases the number of special-q needed decreases (which is
both good and expected). However, this is counter-balanced by the increase in the cost of enumeration.

Impact of B: Similarly, increasing the smoothness bound B naturally increases the probability of
being smooth. This results in more expected relations per special-q and thus a smaller interval would be
required. On the other hand, the total number of relations required is equal to 2π(B) relations and thus
the higher the value of B, the more relations are needed. This can be observed in our experiments where
for increasing B, the total cost decreases and then starts increasing again.

Impact of qmin: The larger the special-q, the less relations it is expected to produce and thus we will
require a larger interval. But if qmin is too small, one must take into account the effect of the special-q
duplicates, see Chapter 4, Definition 24.

The behaviour of the parameters are summarized in Table 5.1 where↗ means the parameters is being
increased and ↘ decreased.

parameters # relations required # special-qs total cost
qmin ↗ – ↗ ↗
R ↗ – ↘ ↗
B ↗ ↗ ↘ then ↗ ↘ then ↗

Table 5.1: Influence of increasing the size of parameters

In our computation, we chose the parameters

qmin = 5, 000, 113 ≈ 222.2, qmax = 26, 087, 683 ≈ 224.6, B = 227, R = 21.

This results in a total of 1,280,000 special-q’s. Further optimizing these parameters with more extensive
experiments is left for future work.

5.3.2 Analyzing the sieving step: enumerating in a lattice
The first step in collecting relations is to run a sieving algorithm to collect promising relations. This is
done using Algorithm 12 from Chapter 4 which enumerates all vectors in LQ,p ∩ S6(R) for a radius R
and a range of special-q values determined above. In addition to these parameters, one must also select
a prime bound pmax and a cofactor bound Bsieve.

In our code, enumeration is done with the program enum.c which takes as input a radius R, a
cofactor bound Bsiev and pre-computed files containing roots of the polynomials h, f1, f2 (mod p) for
primes p ≤ pmax and a range of special-q with the associated reduced bases MQ. It outputs the list of
sieve-survivors.

Question 66. On which side do we consider the special-q’s?

Recall that the special-q method regroups polynomials φ such that φ(αi, ι) share a common factor in
Ki, the ideal Q. Considering this common factor can be done for either the f1-side or the f2-side. It is
common to consider the special-q on the side which produces the largest norms since it will be harder
to find B-smooth norms for it. In our case, the polynomial f2 leads to much larger norms and thus we
consider the special-q on the f2-side. The first part of the relation collection will thus only concern the
f2-side. More precisely, the enumeration step and checking whether the norms are smaller than the sieve-
cofactor only concern the norms N2. However, once we have selected the sieve-survivors, it is necessary

116



to compute both norms N1 and N2 as they are the inputs to the batch algorithm.

Let us fix a special-q Q. The enumeration algorithm must be run for each prime ideal p in K2 up to
pmax = 10, 000, 000 and promising candidates, i.e., promising (a(ι), b(ι))-pairs, correspond to vectors for
which the norms have a small cofactor.

In order to keep track of hits, we use a sieving table indexed by the vectors c of the coefficients
of a(ι), b(ι) converted to an unsigned 64-bit integer value (in our code: uint64_t pos = Vto64(c,
R);). Whenever c is in LQ,p ∩ S6(21) for a given p, we add an approximation of log p to the sieving
table at the corresponding index, where p is the prime below p (in our code: sieve_table[pos] +=
(uint8_t)logp;). We will then only look at promising candidates which are the (a(ι), b(ι))-pairs for
which

∑
log p > 50 (in our code: if (sieve_table[i] > 50)).

For each of these promising candidates, we compute approximations of the corresponding norms,
meaning using floating numbers to accelerate the computation, and finally output the (a(ι), b(ι))-pairs
for which the cofactor Csieve(N2(a(ι) − b(ι)α2)) ≤ Bsieve = 60 (in our code: uint8_t cofac = logN -
sieve_table[i] - sizeQ;). Note that we also divide by the special-q. These are the sieve-survivors
mentioned in Chapter 4. These sieve-survivors obtained at the end of enumeration as the output of
enum.c are represented as

(rel1) a1(ι) b1(ι) N1,f2 N1,f1

(rel2) a2(ι) b2(ι) N2,f2 N2,f1

· · ·

where ai(ι), bi(ι) are encoded into 64-bit integer values. The formatting is chosen to match the pre-
existing format in CADO-NFS in order to directly branch ourselves into CADO-NFS’s code for the batch
and ECM algorithms.

Example 4 (Sieve-survivor). We give below the example of a sieve-survivor outputted by enum.c.

500147500015500123 499995499869499948 79504200998455080841334159240578251487503369685

62478165062664260822071748473

The polynomials corresponding to this sieve-survivor are

a(ι) = 147 + 15ι+ 123ι2,

and
b(ι) = −5− 131ι− 52ι2.

One can also see that the norm on the f2-side is much larger than the norm on the f1-side thus illustrating
our choice to consider the special-q’s on the f2-side.

Concretely for our computation, we collected approximately 76,401 million sieve-survivors. Note that
these survivors are dealt with on-the-fly in order to avoid storing them. In particular, they are removed
just after the batch algorithm. Recall that at this stage of the algorithm, we also remove the Kh-unit
duplicates and the ζ2-duplicates.

The number of leaves and nodes enumerated.

We analyze our enumeration algorithm by computing the expected number of leaves and nodes for a
fixed special-q as the value of p increases. As can be seen in Figure 5.1, the output of our enumeration
algorithm matches the expected values given by the formulae in Chapter 4, Section 4.4.4. Both the
amount of nodes and leaves decrease when p increases. The ratio between the amount of leaves and
nodes also decreases with p as the probability of having a large prime factor in the norm gets smaller.
We want this ratio to remain high as internal nodes correspond to (necessary) operations which do not
produce any information as hits are seen only at the leaf level. We see that the estimation of the number
of internal nodes is not precise. However, it gives a good idea of the general behavior of the algorithm.
Furthermore the ratio of leaves per node indeed remains high, which is promising.

117



Figure 5.1: Number of leaves and nodes (left) and number of leaves per node (right) as a function of p for
a fixed 24-bit special-q. We see that as p increases, both the number of nodes visited by the enumeration
algorithm and the number of leaves decreases, as expected. We compare the output of our code with the
formulae given in Chapter 4 using the Gaussian heuristic.

5.3.3 Balancing sieving, batch and ECM
Recall from Chapter 4, Figure 4.3, that the relation collection can be seen as a sequence of filters.
The sieve-survivors outputted by the enumeration algorithm are now the inputs to the batch algorithm
implemented in CADO-NFS. Running batch and ECM is done sequentially in CADO-NFS with the
program finishbatch. The latter indeed has the option to use ECM on the batch-survivors or not. In
our computation, we chose not to run ECM as the computation was efficient enough for the record to
finish in reasonable time. Of course, further optimizing the parameters including the ECM algorithm
is left for future work. We therefore select the batch-survivors with pbatch = B = 227 and Bbatch = 0.
Indeed, we want the batch-survivors to correspond to our relations and thus we want to ensure that all
the norms have no cofactor left, i.e., they completely factor into primes up to the smoothness bound
pbatch = B. Finally, finishbatch will output the final relations encoded as follows

a(ι), b(ι): t,t,t, · · · : t,t,t, · · ·
where t represents the prime factors of N2 (before the :) and N1 (after the :) expressed in hexadecimal.

Example 5 (Batch-survivor). We give below the example of a batch-survivor outputted by finishbatch.
This batch-survivor corresponds to the same (a(ι), b(ι))-pair as the sieve-survivor from Example 4.

500147500015500123,499995499869499948:5,7,293,8cb,da3,15b5,19c7,3277,529d,10c33,6a1917,b3c06f,

5774ba9:1c9,75d9,be211,3c0dd21,5820169.

The total amount of relations outputted by the relation collection step as described in Algorithm 8
in Chapter 4 is a small percentage of the original sieve-survivors. Moreover, removing all the possible
duplicates further reduces the final amount of relations. These numbers are described in Table 5.2.

Sieve-survivors Batch-survivors
(removing Kh/ζ2-dup.)

Removing special-q
duplicates

# survivors 76 401M 18.69M 13.63M
% kept 0.013% 0.02 % 73 %

Table 5.2: Number of survivors after each step of the relation collection algorithm. The percentage
is given with respect to the previous step. The percentage of sieve-survivors is taken with respect to
vol(S6(21))×#special-q’s.

118



This concludes the relation collection step which took 2.9 core-years or equivalently 25,300 core-hours.
If we use the optimized code presented in Chapter 4, Algorithm 12, the relation collection takes only
23,300 core-hours, thus a gain of nearly 10 %.

5.3.4 From a set of relations to a matrix
The goal is now to transform the factorization of the norms into a factorization of ideals in order to
construct the matrix for the linear system. Indeed, we are looking for the virtual logarithms of the
elements of the factor basis, i.e., ideals of small norms. The information we are looking for is given in
Table 4.2 in Chapter 4 where we describe the matrix of relations.

Transforming the factorization of norms into a factorization in ideals is done with a pre-computed
file renumber. The latter encodes all the ideals of the factor basis. One ideal p = 〈p, φh(ι), x − ρ(ι)〉
corresponds to a line in the file encoded as follows.

p 1 or 2 deg φh φh0
φh1

φh2
ρ0 ρ1 ρ2 index

where p is a prime, 1 or 2 denotes the side we are considering (either the f1-side or the f2-side), the
polynomial φh is expressed as

φh(ι) = φh0 + φh1ι+ · · ·+ ιdeg φh ,

and corresponds to a monic irreducible factor of h(ι) (mod p). Recall that h is of degree 3 and thus
deg φh ≤ 3. The value ρ(ι) is a root of either f1 or f2 (depending on the side we are considering) in
Fp[ι]/φh(ι) and is expressed as

ρ(ι) = ρ0 + ρ1ι+ · · ·+ ρdeg φh−1
ιdeg φh−1 .

Finally, the last value index simply corresponds to an identifier of the ideal used afterwards to build the
matrix (it will correspond to the column number of the ideal).

Remark 19. In Chapter 4 we mentioned that the special-q ideals Q and the ideals p used for enumeration
are of degree 1. However, when we look at batch-survivors, it is possible that some relations include ideals
with deg φh > 1. The file renumber considers those ideals to keep as many potential relations as possible.

This encoding matches the representation of the ideals given in Proposition 1 in Chapter 4 as we will
now illustrate with two examples chosen from the renumber file used in our computation.

Example 6 (Ideal of degree 1). Let us consider the following encoding of an ideal of degree 1.

7 2 1 5 0 0 2 0 0 11

We are looking at an ideal p over the prime 7 of degree 1. We have φh(ι) = φh0 + ι and ρ(ι) = ρ0 = 2.
Thus the ideal represented by this line is

p = (7, ι+ 5, x− 2).

It is affected to the 11th column in the matrix of relations.

Example 7 (Ideal of degree 2). Let us consider the following encoding of an ideal of degree 2.

7 1 2 3 2 0 5 3 0 15

We are looking at an ideal p again over the prime 7 of degree 2. We have φh = 3+2ι+ι2 and ρ(ι) = 3ι+5.
Thus the ideal represented by this line is

p = (7, 3 + 2ι+ ι2, x− (3ι+ 5)).

The file renumber is thus a list of ideals encoded as explained above

119



p1 p1 1 or 2 deg φ1,h φ1,h0
φ1,h1

φ1,h2
ρ1,0 ρ1,1 ρ1,2 index1

p2 p2 1 or 2 deg φ2,h φ2,h0
φ2,h1

φ2,h2
ρ2,0 ρ2,1 ρ2,2 index2

...
pk ≈ 227 1 or 2 deg φk,h φk,h0

φk,h1
φk,h2

ρk,0 ρk,1 ρk,2 indexk

for primes up to the smoothness bound B = 227.

A note on projective ideals. Let us consider the case where f1 or f2 is not unitary. Then if p is a
prime that divides the leading coefficient of fi, there exists a projective ideal above p in the factor basis.
This is the case for f2 and p = 5 in our computation. As in the classical NFS, this is handled in the code
by considering the root 0 of f̃2 where f̃2 is the polynomial obtained by reversing the coefficients of f2 and
exchanging the roles of a and b.

This precomputed file is then used to convert the factorization of the norms into a factorization of
ideals. Recall that the output of finishbatch which provides the factorization of the norms is of the form

(rel1) a1(ι) b1(ι): p1,f2 , p2,f2 , · · · : p1,f1 , p2,f1 , · · ·
· · ·

where pi,f2 (resp. pi,f1) are the primes in the factorization of N2 (resp N1). For each of these primes, we
want to identify which ideal it corresponds to. The output of renumber_tnfs is thus a similar file where
a relation is expressed as

(rel1) a1(ι) b1(ι): index1, index2, index3 · · ·
· · ·

where indexi corresponds to the index of the ideal corresponding to the prime factor pi,fi . We do not
differentiate the indices that come from ideals from the f1-side or the f2-side.

Example 8 (Relation). The batch-survivor from Example 5 finally outputs the relation

500147500015500123,499995499869499948:0,4,c,272,73f,a94,fee,1274,1d04,2369,465f,e8

30d,17b4da,a21070,1c2,2a53,1f5f1,71c9b1,a33bba,

where the terms after : correspond to the indices of the prime ideals. If the multiplicity is greater than 1,
the index is written multiple times.

Remark 20. Every relation starts with the index 0. The latter corresponds to the ideal J1J2 where Ji is
the smallest ideal such that for all (a(ι), b(ι))-pair, the ideal Ji(a(ι) − b(ι)αi) is an integral ideal. As in
the classical NFS, simply adding this column filled with ones in the matrix is enough to accommodate the
fact that f1 or f2 might not be monic.

This outputted file gives us part of the matrix used in the linear algebra step. The latter can be seen
as the following table

Relations p1 p2 p3 · · ·
rel1 1 0 0 · · ·

where indexi allows to place 1 in the corresponding column when the ideal appears in the factorization.
The missing part of the input matrix to the linear algebra step are the columns that correspond to
Schirokauer maps which we discuss in Section 5.4.2. It remains to answer the following question.

Question 67. How do we translate a prime p in the factorization of the norm into its corresponding
ideal over p?

120



This is done by checking whether an ideal p divides φ(ι, αi) = a(ι) − b(ι)αi. Indeed, Proposition 1
from Chapter 4 tells us that the unique ideal of Oi above p which divides φ(ι, αi) is the ideal (p, αi−r(ι))
with r(ι) ≡ a(ι)

b(ι) (mod p). More precisely, we have

p| (a(ι)− b(ι)αi) ⇐⇒
a(ι)

b(ι)
≡ ρ(ι) (mod (p, φh(ι))). (5.1)

Recall that we have the following structure of tower of number fields.

Q −→ Kh −→ Ki

p (p, φh(ι)) p = (p, φh(ι), x− ρ(ι))

Question 68. What does Equation 5.1 mean?

For ideals of degree 1. In this case, we know that φh(ι) is of degree 1 since p is. This also means
that ρ(ι) = ρ ∈ Z/pZ. Equation 5.1 can thus be re-written as

p| (a(ι)− b(ι)αi) ⇐⇒
a(rh)

b(rh)
≡ ρ (mod p),

where rh is a root of φh(ι), i.e., we have rh = −φh0
(mod p). Hence, in order to test for divisibility by

the ideal p, we simply verify
a(rh)− ρb(rh) ≡ 0 (mod p).

For ideals of degree 2. This case is slightly more complex as φh(ι) is now also of degree 2. If we have

a(ι) ≡ ρ(ι)b(ι) (mod p), (mod φh(ι)),

then Equation 5.1 is satisfied. Note that the above equation is equivalent to

(a(ι) (mod φh(ι))) ≡ (ρ(ι)b(ι) (mod φh(ι))) (mod p).

Both sides of this equivalence are polynomials in ι of degree less than deg φh(ι). Thus it suffices to check
whether the coefficients of these two polynomials are equal modulo p. This narrows down to checking
two equalities of elements modulo p.

Remark 21. For ideals of degree 3, the same reasoning than above applies and results in testing three
equations modulo p.

Checking the divisibility by ideals of the factor basis is done with renumer_tnfs.cpp. Concretely we
can summarize this process as follows.

For each prime factor pgjj in the factorization of Ni, we first need to find all ideals p over pgjj that
divides φ(ι, αi). To do so, for a given pj we proceed as follows.

1. use renumber file to find all ideals over pj , meaning lines in renumber that start with the prime pj .

2. check whether the ideal divides φ(ι, αi), as explained above.

3. form a list L = {ideals over pj that divides φ(ι, αi)}

Next, we need to make sure that the multiplicities coincide. Let us first illustrate this with a simple
example.

Example 9. Suppose that in the factorization of the norm Ni, we have a prime factor p4, i.e, p4|Ni ∈ Z.
Now suppose we have found the ideals p1, p2 and p3 above p that divide a(ι)−b(ι)αi, i.e., L = {p1, p2, p3}.
Consider the following two cases.

Case 1. The degrees of the ideals pi are deg p1 = 1,deg p2 = 1 and deg p3 = 2. Then
∑

deg pi = 4, and
thus the ideal factorization corresponding to p4 is p1p2p3.

Case 2. Now consider the case where the degrees are deg p1 = 1,deg p2 = 1 and deg p3 = 1. Then∑
deg pi = 3, and thus the ideal factorization corresponding to p4 is pe11 pe22 pe33 where ei = 1 for two ideals

and ei = 2 for one of them.

121



When
∑

p∈L deg p 6= gj as in Case 2, we unfortunately do not know how to identify the exponents ei
of the ideals. Thus we throw away the relation. More specifically, we have the following steps to deal
with multiplicities.

1. if |L| = 1, output the index of the unique ideal.

2. if |L| > 1: output indices of ideals in L if and only if
∑

deg pj = gj .

Remark 22. Fortunately, the amount of relations we throw away because we are not able to produce the
ideal factorization only corresponds to a loss of 2% in our computation. The number of batch-survivors
given in Table 5.2 is 18.69M, and removing the relations for which we are not able to obtain the ideal
factorization we finally have 18.25M batch-survivors.

We are left with two questions that our code does not consider.

Question 69. How can we find the multiplicities of the ideals in the factorization and thus keep those
relations? And what happens when p|disc(fi)?

The answer to these two questions is not hard in theory and efficient algorithms are given in Cohen’s
textbook [Coh12]. However, since the loss of relations is acceptable, we preferred to keep our code simple
at this stage of the development.

Now that we have all the indices of the ideals present in the factorizations of the norms Ni for many
polynomials φ, we can move to the next step: linear algebra. Following CADO-NFS’s tradition, we deal
with the Schirokauer maps after filtering but it could be done before.

5.4 Linear algebra
Before starting the linear algebra step, the matrix must undergo a few modifications in order to speed up
the resolution of the system. This is done by a step called filtering. More precisely, the aim of filtering
is to reduce the size of the matrix of relations without modifying its kernel.

5.4.1 Duplicates and filtering

Dealing with special-q duplicates. As mentioned in Chapter 4, only ζ2-duplicates and Kh-unit
duplicates can be dealt with prior to constructing the matrix. To remove special-q duplicates, we simply
compare the ideal factorization of each relation and remove identical lines (after :) in the file containing
all of our relations. Before eliminating special-q duplicates we had 18.25M batch-survivors. Removing
these duplicates decreased the amount of survivors to 13.63M, as seen in Table 5.2, which corresponds to
a loss of 27%.

Filtering. The matrix of relations is now ready to be sent to CADO-NFS’s filter. We have 15.21M ideals
in the factor basis, and thus the input matrix to CADO-NFS’s filter is a matrix of size 13.63M ×15.21M .
Note that not all the ideals will intervene in the relations. Indeed, in our computations, only 13.18M
ideals were involved. The input matrix to the filtering step is illustrated in Figure 5.2.

Ideals
p1 p2 · · · p15.21M

Relations
Rel1
Rel2
...

Rel13.63M

Figure 5.2: Input matrix to filtering step.

The goal of filtering is to both reduce the size of the matrix and make it square. Filtering in CADO-
NFS comprises of two steps: purge and merge.

122



Purge. The first part of filtering consists in removing columns that only contain zero coefficients.
Indeed as mentioned above, only 87% of the ideals of the factor basis appear in relations. The rest will
lead to zero-columns that are deleted.

Moreover, the purge step removes columns (and corresponding lines) that contain a unique element.
These columns correspond to prime ideals that occur only once in all the relations. The latter are named
singletons. This does not remove any information as we now explain.

Question 70. How will we compute the virtual logarithm of singletons?

Because it is the unique ideal in a relation for which we do not know the virtual logarithm, the latter will
be computed after the linear algebra step from the other virtual logarithms involved. It is thus sufficient
to keep track of the relations removed by the filter in order to recompute the missing virtual logarithms
before the descent phase.

The second part of purge consists in transforming the matrix into a nearly square matrix. In general, as
can be seen in our computation, once we remove the unnecessary ideals, the number of lines (corresponding
to the number of relations) is greater than the number of columns (i.e., the number of ideals involved in
the relations).

In order to remove the additional lines, the filter proceeds with the so-called clique removal algorithm
associated with a weight function that determines which clique is more advantageous to remove. The
term clique is wrongly associated to the similar notion from graph theory which denotes a connected
component of a graph. In the context of filtering, a clique usually refers to a set of relations (i.e., lines)
such that removing one of these lines creates as many singletons as the size of the clique. Removing
cliques is done until the matrix is (nearly) square. Details are given in [Bou15].

In our computation, we started with 13.63M lines in the matrix. Once we removed the singletons, we
were left with only 5.21M lines. Hence, purge reduced the number of lines in our matrix by approximately
62%. Thus we see that even if the purge step (and more generally filtering) is not present in the complexity
analysis of TNFS, it is of significant importance in practice for the feasibility of the linear algebra
step.

Question 71. Why do we want a square matrix?

The block-Wiedemann algorithm which we use for the linear algebra step (and other iterative al-
gorithms in general) takes as input a square matrix. Indeed, the algorithm considers powers of the
input matrix which requires a square matrix. The filter must thus produce a nearly square matrix.
The nearly comes from the fact that we will have to add columns for the Schirokauer maps. Since we
know in advance how many columns we will add (7 in our computation), we keep as many additional lines.

Merge. The merge step corresponds to a structured Gaussian elimination. It aims at further reducing
the matrix size by performing linear combinations of the rows of the input matrix. Indeed, combining lines
of the matrix can create singletons that are then removed. This does not change the squareness of the ma-
trix as both a column and a line are removed for each singleton. The resulting matrix is smaller but also
denser due to possible added non-zero coefficients. A density parameter is usually chosen to determine
the average number of coefficients per line. This serves as a stopping condition for the elimination process.

In our computation, the input matrix to the merge process is a square matrix of dimension 5.21M as
mentioned above. After Gaussian elimination up to a density of 100 coefficients per line, the size of the
matrix is decreased to 1.73M and if we eliminate up to 150 coefficients per line, the size is even further
decreased to 1.51M.

Question 72. How do we choose the density parameter?

Recall that the complexity of the linear algebra step with Wiedemann’s algorithm is O(N2λ) where λ is
the average number of non-zero coefficients per line. In theory, it is thus possible to optimize λ in order
to minimize the overall cost of the linear algebra step. In practice, this parameter does not affect the

123



complexity much and λ = 150 is chosen in our computation based on previous observations.

After filtering, we are left with 1.51M relations and a (1.51M + 7) × 1.51M dimension matrix. The
entire filtering step removed 89% of the relations (or 92% if we count before the removal of the duplicates).

Remark 23. Because the filter in CADO-NFS was originally implemented for factorization, it only works
for a matrix to which we have not yet added the columns corresponding to the Schirokauer maps. Hence,
it is important to keep in mind the operations done during the filter to the matrix in order to later report
them to the columns corresponding to the Schirokauer maps.

5.4.2 Schirokauer maps
Recall from Chapter 4, Section 4.2.3 the notion of Schirokauer maps. The latter allow us to include in
the matrix the missing information necessary to compute the virtual logarithms of our ideals. There are
as many Schirokauer maps as the rank of units in Ki. For our computation, this means 2 on the f1-side
and 5 on the f2-side.

Moreover, we explained in Chapter 4, Section 4.2.3 that Schirokauer maps in the context of TNFS
were simply built by constructing an isomorphism from Ki to a number field KFi where Fi is of degree
deg h× deg fi. Consider an isomorphism

Φi : Ki → KFi

a(ι)− b(ι)x 7→ Φi(a(ι)− b(ι)x)

with
Φi(a(ι)− b(ι)x) = a0Φi(1) + a1Φi(ι) + a2Φi(ι

2)− b0Φi(x)− b1Φi(xι)− b2Φi(xι
2).

The elements Φi(y) ∈ KFi are polynomials in x of degree 12 for i = 1 and 6 for i = 2. The program
prepareMapData.mag creates 6×degFi matrices with the coefficients of Φi(1),Φi(ι),Φi(ι

2),Φi(x),Φi(xι)
and Φi(xι

2). Hence, computing the isomorphisms Φi that maps sieving polynomials φ to the number field
KFi narrows down to taking linear combinations of the pre-computed elements of the 6× degFi matrix.

Question 73. How are the polynomials Fi and the matrices defined?

The program prepareMapData.mag starts by computing KFi . The function AbsoluteField(Ki) in
Magma returns a number field isomorphic to Ki defined as an absolute extension (over Q). The defining
polynomial of KFi is thus Fi. For example, we have K1 = Kh/(x

4 + 1) and

KF1
= Q[X]/(x12 − 4x10 + 4x9 + 9x8 − 12x7 + 10x6 − 36x5 + 4x3 + 44x2 + 4x+ 1).

Once the number fields KFi are defined, the evaluations of Φ at 1, ι, x, · · · , are simply given by Magma’s
representation of these elements in KFi . For example Φi(ι) is given by KFi!Kh.1.

Remark 24. The values Φi(1),Φi(ι), · · · have denominators. Since Schirokauer maps, as implemented in
CADO-NFS, only require integers, the program prepareMapData.mag directly multiplies the coefficients
by the least common multiplier of these denominators.

This denominator-clearing can be made completely transparent by choosing Schirokauer maps Λi
that evaluate to zero over Q. This corresponds to the legacy mode in CADO-NFS. We will discuss in
Section 5.7 the possibility to choose even further specific Schirokauer maps that could lead to faster linear
algebra.

Open Question 3. Is there an optimal way to choose Schirokauer maps in the context of TNFS?

Computing the Schirokauer maps, i.e., filling up the seven columns, took 40 core-hours by parallelizing
the process over 64 virtual cores.

124



5.4.3 Solving the system
In Chapter 4, we described Wiedemann’s algorithm that efficiently solves sparse systems of linear equa-
tions. In practice, its block-variant is used to parallelize the process. Recall that one of the most costly
steps of Wiedemann’s algorithm is constructing a Krylov’s sequence {aᵀM ib}2Ni=1, where M is the input
matrix of dimension N . Fortunately, this construction can be parallelized. In the block variant, the
vectors a and b are replaced by matrices and the sequence computed is thus {AM iB} for i = 1, 2, · · ·
where A,B are matrices of smaller dimensions, more precisely, we have A ∈ Z/`ZN×m and B ∈ Z/`ZN×n
for given parameters n,m > 0 known as blocking factors.

Then n separate nodes will compute the sequence {AM ibj}Li=1, where L = dN/me+ dN/ne+ dm/n+
n/me. The total cost of the algorithm remains the same, meaning O(λN2), however distributed over
n nodes. The main difference resides in the fact that we now have a sequence {AM iB}Li=1 of matrices
whereas we had coefficients in Wiedemann’s algorithm. In 2002, Thomé [Tho02] proposed a variant of
Berlekamp-Massey algorithm to compute linear generators for sequences of matrices. His algorithm runs
in sub-quadratic time. Hence, similarly as in Wiedemann’s original algorithm, we find a linear generator
that plays the same role as the minimal polynomial of M , from which we can reconstruct a vector of the
kernel.

The input matrix to the block-Widemann algorithm is the concatenation of the output of the filter
step and the columns from the Schirokauer map to which we applied the same linear transformations as
in the filter. The resulting matrix is square. The matrix outputted by the filter after both purge and
merge is of size 1.51M. From the Schirokauer maps, we know that 7 columns are added. This is illustrated
in Figure 5.3.

Output of filter SMs

Figure 5.3: Input to the block-Wiedemann algorithm

Question 74. Is this matrix really sparse?

The main issue with the input matrix given in Figure 5.3 is the fact that the columns coming from the
Schirokauer maps are far from sparse. However, as was shown in [JP16], it is possible to solve the linear
system without changing the asymptotic complexity of the block-Wiedemann algorithm. Indeed, the
main idea is to only apply block-Wiedemann’s algorithm to the sparse part of the matrix, thus ignoring
the Schirokauer columns. Additionally, one should consider the matrix B in the sequence {AM iB}Li=1 as
the matrix formed by these Schirokauer columns. Hence, the value n is chosen to be exactly the number
of Schirokauer maps, in our case 7. Further details are given in [JP16].

The computation of each sequence {AM ibj} on a single node took about 19,440 seconds, i.e., 5.4
hours and thus the total time to compute the sequence is 19, 440× 7× 32 seconds which corresponds to
1,210 core hours (where n = 7 is the number of Schirokaueur maps and 32 is the number of CPU cores
per node). The reconstruction of the linear generator took 2,400 seconds, i.e., 40 minutes and finally the
reconstruction of the solution took 19,380 seconds, i.e., 5.4 hours. Overall, the linear algebra step thus
took (19, 440× 7 + 2, 400 + 19, 380)× 32 = 5, 051, 520 core seconds or equivalently 1,403 core hours.

One can see that the most expensive steps of the linear algebra part are the computation of the
sequences and the solution step where the sparse matrix-vector multiplication is the most costly operation.

125



We now have the virtual logarithms of the elements of the factor basis in a file log_reconstructed.txt.
The encoding of the ideals are the same as in the file renumber explained previously, and the last coeffi-
cient correspond to the virtual logarithm of the ideal.

Example 10. For example, the following line can be found in log_reconstructed.txt.

5 1 1 2 0 0 0 0 0 3 17371686314656041575273159549226841957739008784327397

The ideal p = 〈5, ι+ 2, x〉 in the factor basis of index 3 has virtual logarithm

vlog p = 17371686314656041575273159549226841957739008784327397.

5.5 Descent step and discrete logarithm of the target
Now that we have solved our system, we are ready for the descent step. Recall that

` = 18242935344221832539906081412848119704309124424217403

is the modulus with which we work corresponding to the prime order of a subgroup of the multiplicative
group of our target finite field.

Question 75. What is our target element?

Recall that we chose as target in Fp6 an element whose decimals are taken from π, that is

target =(31415926535897932384626433 + 83279502884197169399375105ι

+ 82097494459230781640628620ι2) + x(89986280348253421170679821

+ 48086513282306647093844609ι+ 55058223172535940812848111ι2).

Question 76. How did we choose the generator g?

The representation of Fp6 is naturally obtained as a degree-2 extension (defined by f2(x)) of the field Fp3
defined by h(ι), meaning Fp6 ∼= Z[ι][x]/(I), where I is a common irreducible factor of f1 and f2. We took
as a generator the element g = x + ι. This element g = x + ι, lifted in the field defined by f1 is a unit
(of infinite order). This allowed us to easily compute its virtual logarithm as it can be found using the
virtual logarithms outputted by the linear algebra step and an additional Schirokauer map computation.

Remark 25. Note that the virtual logarithm of the generator is computed in an arbitrary basis, say γ,
the same basis for which we have the virtual logarithms of the elements of the factor basis outputted by
the linear algbebra step.

In order to get the discrete logarithm of our target element in base g, we first compute the discrete
logarithm of the target in base γ. Because we know the discrete logarithm of g in base γ we can finally
obtain the discrete logarithm of our target in base g.

As mentioned in Chapter 4, we use Guillevic’s algorithm [Gui19] to optimize the initial splitting step.
The descent starts by a smoothing step which required 45 core hours to generate 64M candidates and 10
core hours to identify an element s ∈ F∗p6 such that its lift to K1 has a 35-bit smooth norm.

The factors of s greater than 27-bit for which we did not have the virtual logarithms yet were descended
in a single special-q step. This descent was done using enum.c and finishbatch with a larger radius
R = 33. Because of the small amount of factors concerned, the time was negligible. Thus in total,
the descent step took 55 core hours. The overall time in core hours of the computation is reported in
Table 5.3.

We finally find the discrete logarithm of our target element:

log(target) = 7627280816875322297766747970138378530353852976315498.

126



Relation Collection Linear algebra Schirokauer maps Descent Overall time
23,300 1,403 40 55 24,798

Table 5.3: Overall time of our record computation in core hours.

In order to confirm the validity of our computation, we verify that glog(target) = target is indeed true,
modulo `th powers, since we computed the discrete logarithm only modulo `. The verification script for
SageMath is given below.

SageMath verification script to check the discrete log of Tower NFS computation in GF(p6).

p = 135066410865995223349603927
ell = 18242935344221832539906081412848119704309124424217403
cof = (p**6-1) // ell

# Construction of the finite field:
Fp = GF(p)
FpX.<X> = Fp[]
h = X**3 - X + 1
Fp3.<ι> = Fp.extension(h)
Fp3.<Y> = Fp3[]
phiY = Y**2 + 64417723306991464419622353*Y + 1
Fp6.<x> = Fp3.extension(phiY)

# Generator and target element:
gen = ι + x
target = ( 31415926535897932384626433 + 83279502884197169399375105*ι
+ 82097494459230781640628620*ι**2) + x*( 89986280348253421170679821 +
48086513282306647093844609*ι + 55058223172535940812848111*ι**2)

# Logarithm of target, as computed with TNFS:
log_target = 7627280816875322297766747970138378530353852976315498

# Check that this is indeed the log modulo ell:
(gen**cof)**log_target == (target**cof)

5.6 Comparing with NFS computations
An important aspect for DLP (and factoring) records is the size of the norms involved in the computation.
Indeed, recall that the complexity of the algorithm is highly dependent on the smoothness probability of
the norms. If norms are smaller, then the relation collection step will be more efficient as it will be faster
to find enough B-smooth norms.

5.6.1 Size of norms in our TNFS computation

One significant advantage of TNFS over NFS is the smaller size of the norms considered. We report in
Figure 5.4 the average bitsize of the norms N1 and N2/q for the relations we obtained at the end of the
relation collection step. Note that because we used the special-q method on the f2-side, which has larger
norms, we also divide by the size of the special-q.

On average, the norms N1 are around 95 bits and the norms N2/q are around 154 bit. The overall
size of the product of the norms is thus around 249 bits.

127



Figure 5.4: The bitsize of the norms coming from the relations in our computation. On the left, the
norms N2/q have average bitsize 154 bits and on the right the norms N1 have average bitsize 95 bits.

Our record computation takes place in a 521-bit finite field. We would like to consider the following
questions.

Question 77. How is our TNFS computation comparable with factoring an integer of the same size?
How does it compare to using NFS for DLP in a 521-bit prime field?

The git repository of CADO-NFS provides optimized parameters for both factoring and discrete
logarithms computations for various target-sizes. We will use these parameters for our next comparisons.

5.6.2 Comparing with factoring with NFS
We look at the parameters from the file params.c155 and the polynomials from c155.poly in CADO-NFS.
This means we are considering an integer N with 155 digits, which corresponds to a 512-bit integer, hence
slightly smaller than the size we want. A 521-bit integer would have around 157 digits, hence we are close
enough for the purpose of this comparison.

Polynomial selection from c155.poly.

f1(x) =745920x5 − 2076894693938x4 − 681801484930531955x3 + 1614628025120092091914179x2

+ 188904872167908265939395818184x− 58786919202859486133821343298647600,

and
f2(x) = 77569389534388942609247x− 547973805962596238141689365703.

Sieving parameters from params.c155. The pmax on both sides is taken to be a 25-bit integer, the
smoothness bound B is taken to be 229, and the cofactors are around 62 bits. The value I = 214 gives the
sieving space A = [−I/2, I/2] × [0, I/2], whereas we have A = vol(S6(R)) for TNFS. To have the same
volume, we would need to pick R = 17. Recall that our computation is done with R = 21 and thus norms
with TNFS and R = 17 would be slightly smaller than those reported above. Finally, qmin = 15, 470, 309.

What we do. We randomly sample vectors c = (i, j) such that |i| < I/2 and 0 < j < J . Here, we take
I = J = 214 and estimate the bitsize of the norms. To do so, we define the lattice Lq for a given special-q
(we choose q = 15, 470, 327, which corresponds to the first prime after the given qmin) as follows

Lq = [(q, 0), (r, s)]

where r is a root of f1 mod q and s is the skewness factor, here equal to 574,720. The skewness factor s
in the lattice is an additional parameter that comes into play only in factorization computations. Indeed,
in this case the coefficients of the polynomial f1 are disbalanced as can be seen above. The coefficients
of high degree are smaller than those of small degree. This effect is compensated by adapting the sieving

128



area and taking a larger than b in an (a, b)-pair, see [BBKZ16]. We then reduce the lattice to have smaller
coefficients,

Mq = LLL(Lq) = LLL([(q, 0), (r, s)]).

For a given vector c = (i, j) ∈ S, we compute v = c ×Mq = (a, b) and define φ = a − bx. We then
compute the norms N1 = f1(a/b)b5/q as we consider the special-q on the f1-side and N2 = f2(a/b)b2.
The bitsize of the norms N1, N2 are on average

logN1/q ≈ 167,

and
logN2 ≈ 113.

Thus, the product of the norms is around 280 bits which is larger than the one considered in our compu-
tation for which we had 249 bits.

5.6.3 Comparing with DLP with NFS
We would like to make the same comparison with a DLP computation done with NFS.

Polynomial selection. We use Joux-Lercier to obtain a polynomial f1 of degree 4 and a polynomial
f2 of degree 3. We have

f1(x) = 6x4 + x3 − 8x2 − 3x+ 6,

and

f2(x) =− 64071264306884991611859009153886700616x3 − 115884379190374676852348454783130883186x2

+ 382823080720299801084267253734861739469x− 14529492984288436819691699253895818591.

Sieving parameters. We choose the parameters from CADO-NFS parameters/dlp/params.p155
(line 53). The pmax value is taken to be 23 bits (resp. 26 bits) on the f1-side (resp. on the f2-side). The
smoothness bound is 229 (resp. 230) on the f1-side (resp. on the f2-side). The cofactor size is 81 bits
(resp. 64 bits) on the f1-size (resp. on the f2-side). Finally, the value I = 214 gives the sieving space
A = [−I/2, I/2]× [0, I/2], similarly as for factoring.

What we do. We randomly sample vectors c = (i, j) such that |i| < I/2 and 0 < j < J . Again, we
take I = J = 214. We define the lattice Lq for a given special-q (we choose q = 561, 907, no values were
given in the parameters) as follows

Lq = [(q, 0), (r, 1)],

where r is a root of f2 mod q. We reduce it to have smaller coefficients

Mq = LLL(Lq) = LLL([(q, 0), (r, 1)]).

For any vector c ∈ S, we compute v = c ×Mq = (a, b) and define φ = a − bx. We then compute the
norms N1 = Res(φ, f1) = f1(a/b)b4 and N2 = Res(φ, f2) = f2(a/b)b3/q . The bitsize of the norms N1, N2

are thus
logN1 ≈ 95,

and
logN2/q ≈ 175.

on average. Thus the product of the norms is 270 bits, slightly less than for factoring but still more than
with TNFS, as expected, where we had 249. Recall that to consider an equal volume, we would have
chosen a smaller R and thus the bitsize of the norms would be even smaller.

Hence we can see that TNFS indeed considers smaller norms for nearly-equivalent computations for
both DLP and factoring, which is a significant motivation to consider this algorithm for further record
computations. This fact was already known to hold asymptotically, but we confirm this is already the
case (and very much so!) for sizes amenable to practical computation.

129



5.6.4 Comparing with other high-dimension sieves
In Chapter 4, we compared our enumeration procedure with the 3-dimensional sieving algorithms of
Laurent Grémy [Gré18] and McGuire and Robinson [MR21]. In particular, we argued that considering
a d-sphere instead of a d-orthotope would lead to a faster sieving step. In Table 5.4 we compare our
computation with theirs, keeping in mind that we also do not use the same algorithm. Our computation
is much faster despite the larger size of the finite field considered.

Parameters [GGMT17] [MR21] This work
Algorithm NFS NFS TNFS

Field size (bits) 422 423 521
Sieving dimension 3 3 6

Sieving time 201,600 69,120 23,300

Table 5.4: Comparison of the relation collection step in core hours with [GGMT17] and [MR21] for Fp6 .

5.7 Conclusion
This chapter presented the first implementation and computation of a discrete logarithm using TNFS.
This record corresponds to the larger characteristic p for which a discrete logarithm computation is
performed in Fp6 . The latest record in Fp6 was given in [MR21] in 2020 for a 423-bit finite field. We
mention here a few directions for future work.

Using Galois action. A factor 2 in the sieving time can easily be gained by considering Galois actions.
Indeed, consider the special-q q = (q, rh, rf2) and (a(ι), b(ι)) a pair leading to a relation for q. Then, the
special-q qσ = (q, rh, r

−1
f2

) will also lead to the relation given from the pair (b(ι), a(ι)) where it suffices to
invert the roles of a and b.

In previous record computations such as in [BGGM15], the use of the Galois action on the ideals
also saved a factor 4 in the linear algebra step. However, it is not clear how this can be translated to
the TNFS setup. A better understanding of the interaction between Schirokauer maps and the Galois
interaction seems to be a necessary step towards this improvement.

Road to bigger sizes. One main advantage of TNFS over NFS when computing discrete logarithms
is the much smaller bitsize of the norms involved as was illustrated above. This indicates that for a
comparable computational cost, it would be possible to compute discrete logarithms in much larger finite
fields using TNFS rather than NFS.

Open Question 4. Up to which size of finite field extension is it reasonable to believe TNFS performs
efficiently?

The limitations of our algorithm will quickly arise when the dimension of the lattice increases. Indeed,
whereas enumerating in small dimension lattices is very fast, enumeration is done # special-q ×pmax times
approximately and thus a slight increase in the time of a single enumeration process impacts by quite a
lot the overall time of relation collection. This is also true if pmax is increased for example, or if we require
more special-q’s. However, considering dimensions up to 8 seems reachable at this point. A significant
amount of work remains to study the interactions between the many parameters of all the sub-algorithms
of TNFS in order to optimize it and aim for larger finite fields.

130



Part III

Partial key recovery from side-channel
information

131





Chapter 6

Overview of partial key recovery
methods

You are dangling in a rope sling hung from the ceiling of a datacenter in an undisclosed
location, high above the laser tripwires criscrossing the floor. You hold an antenna over the
target’s computer, watching the bits of their private key appear one by one on your smartwatch
display. Suddenly you hear a scuffling at the door, the soft beep of keypad presses. You’d better
get out of there! You pull your emergency release cable and retreat back to the safety of the
ventilation duct. Drat! You didn’t have time to get all the bits! Mr. Bond is going to be very
disappointed in you. Whatever are you going to do?

Side-channel attacks targeting cryptography may leak only partial or indirect information about the
secret keys of the protocols. There are a variety of techniques in the literature for recovering secret keys
from partial information. In this chapter, we survey several of the main families of partial key recovery
algorithms for RSA, (EC)DSA, and (elliptic curve) Diffie-Hellman, the public-key cryptosystems in com-
mon use today. We categorize the known techniques by the structure of the information that is learned
by the attacker, and give simplified examples for each technique to illustrate the underlying ideas. This
chapter serves as an introduction to two side-channel attacks presented in Chapters 7 and 8.

The chapter is joint work with Nadia Heninger and is available on Eprint, report 2020/1506.

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Key recovery methods for RSA . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.1 RSA Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.2 RSA Key Recovery with Consecutive bits known . . . . . . . . . . . . . . 142
6.2.3 Non-consecutive bits known with redundancy . . . . . . . . . . . . . . . . 151

6.3 Key recovery methods for DSA and ECDSA . . . . . . . . . . . . . . . 153
6.3.1 DSA and ECDSA preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.2 (EC)DSA key recovery from most significant bits of the nonce k . . . . . . 155

6.4 Key recovery method for the Diffie-Hellman Key Exchange . . . . . . 161
6.4.1 Finite field and elliptic curve Diffie-Hellman preliminaries . . . . . . . . . 161
6.4.2 Most significant bits of finite field Diffie-Hellman shared secret . . . . . . 162
6.4.3 Discrete log from contiguous bits of Diffie-Hellman secret exponents . . . 163

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

133



6.1 Introduction
In a side-channel attack, an attacker exploits side effects from computation or storage to reveal ostensibly
secret information. Many side-channel attacks stem from the fact that a computer is a physical object in
the real world, and thus computations can take different amount of time [Koc96], cause changing power
consumption [KJJ99], generate electromagnetic radiation [QS01], or produce sound [GST14], light [FH08],
or temperature [HS14] fluctuations. The specific character of the information that is leaked depends
on the high- and low-level implementation details of the algorithm and often the computer hardware
itself: branch conditions, error conditions, memory cache eviction behavior, or the specifics of capacitor
discharges.

The first work on side-channel attacks in the published literature did not directly target cryptogra-
phy [EL85], but since Kocher’s work on timing and power analysis in the 90s [Koc96, KJJ99], cryptogra-
phy has become a popular target for side-channel work. However, it is rare that an attacker will be able
to simply read a full cryptographic secret through a side channel. The information revealed by many
side-channel attacks is often indirect or incomplete, or may contain errors.

Thus in order to fully understand the nature of a given vulnerability, the side-channel analyst often
needs to make use of additional cryptanalytic techniques. The main goal for the cryptanalyst in this
situation is typically to wonder the following.

Question 78. I have obtained the following type of incomplete information about the secret key. Does
it allow me to efficiently recover the rest of the key?

Unfortunately there is not a one-size-fits-all answer: it depends on the specific algorithm used, and on
the nature of the information that has been recovered.

The goal of this chapter is to collect some of the most useful techniques in this area together in
one place, and provide a reasonably comprehensive classification on what is known to be efficient for
the most commonly encountered scenarios in practice. That is, this chapter is a non-exhaustive survey
and a concrete tutorial with motivational examples. Many of the algorithmic papers in this area give
constructions in full generality, which can sometimes obscure the reader’s intuition about why a method
works. Here, we aim to give minimal working examples to illustrate each algorithm for simple but
nontrivial cases. We restrict our focus to public-key cryptography, and in particular, the algorithms that
are currently in wide use and thus the most popular targets for attack: RSA, (EC)DSA, and (elliptic
curve) Diffie-Hellman.

Throughout this work, we will illustrate the information known for key values as follows:

Most significant bits Least significant bits

Known bits

The organization of this survey is given in Table 6.1.

6.1.1 Motivation
While this chapter is mostly operating at a higher level of mathematical abstraction than the side-
channel attacks that we are motivated by, we will give a few examples of how attackers can learn partial
information about secrets.

Modular exponentiation. All of the public-key cryptographic algorithms we discuss involve modular
exponentiation or elliptic curve scalar addition operating on secret values. For RSA signatures, the victim
computes s = md (mod N) where d is the secret exponent. For DSA signatures, the victim computes a
per-signature secret value k and computes the value r = gk (mod p), where g and p are public parameters.
For Diffie-Hellman key exchange, the victim generates a secret exponent a and computes the public key
exchange value A = ga (mod p), where g and p are public parameters.

134



Scheme Secret information Bits known Technique Section

RSA p ≥ 50% most significant
bits

Coppersmith’s method §6.2.2.2

RSA p ≥ 50% least significant
bits

Coppersmith’s method §6.2.2.3

RSA p middle bits Multivariate Coppersmith §6.2.2.4

RSA p multiple chunks of bits Multivariate Coppersmith §6.2.2.4

RSA > log logN chunks of p Open problem

RSA d (mod p− 1) MSBs Coppersmith’s method §6.2.2.7

RSA d (mod p− 1) LSBs Coppersmith’s method §6.2.2.7 and §6.2.2.3

RSA d (mod p− 1) middle bits Multivariate Coppersmith §6.2.2.7 and §6.2.2.4

RSA d (mod p−1) chunks of bits Multivariate Coppersmith §6.2.2.7 and §6.2.2.4

RSA d most significant bits Not possible §6.2.2.8

RSA d ≥ 25% least significant
bits

Coppersmith’s method §6.2.2.9

RSA ≥ 50% random bits of p and
q

Branch and prune §6.2.3.1

RSA ≥ 50% of bits of d (mod p−
1) and d (mod q − 1)

Branch and prune §6.2.3.2

(EC)DSA MSBs of signature nonces Hidden Number Problem §6.3.2

(EC)DSA LSBs of signature nonces Hidden Number Problem §6.3.2

(EC)DSA Middle bits of signature
nonces

Hidden Number Problem §6.3.2

(EC)DSA Chunks of bits of signature
nonces

Extended HNP §6.3.2.4

EC(DSA) Many bits of nonce Scales poorly

Diffie-Hellman Most significant bits of
shared secret gab

Hidden Number Problem §6.4.2

Diffie-Hellman Secret exponent a Pollard kangaroo method §6.4.3
Diffie-Hellman Chunks of bits of secret ex-

ponent
Open problem

Table 6.1: Visual table of contents for key recovery methods for public-key cryptosystems.

135



Naive modular exponentiation algorithms like Square-and-Multiply operate bit by bit over the bits
of the exponent: each iteration will execute a square operation, and if that bit of the exponent is a 1,
will execute a multiply operation. We recall the pseudo-code for the left-to-right Square-and-Multiply
algorithm in Algorithm 13.

Algorithm 13 Left-to-right Square-and-Multiply algorithm
Input: x, k, n ∈ N, with x < n and k = (ki−1, ki−2, · · · , k0) its bit representation
Output: xk (mod n)

1: c← 1
2: for j = i− 1 to 0 do
3: c← c2 (mod n) . Square-
4: if ki = 1 then
5: c← c× x . and-Multiply
6: return c

There exists a right-to-left version of Square-and-Multiply for which the bits are read from k0 to ki−1.
The overall structure of the algorithm is very similar with simple adjustments. If the bit is 1, then we
multiply (mod n) the value c by a value y which is initialized at x, and then we square y mod n. If the
bit is 0, we only square y.

More sophisticated modular exponentiation algorithms precompute a digit representation of the ex-
ponent using non-adjacent form (NAF), windowed non-adjacent form (wNAF) [Möl03], sliding windows,
or Booth recoding [Boo51] and then operate on the precomputed digit representation. We now recall the
NAF representation and its windowed variant wNAF as well as how it is used for exponentiation as we
will use it in Chapter 8. We refer to [Gor98] for more details.

The (w)NAF representation. The execution time of the textbook Square-and-Multiply algorithm
depends on the number of non-zero bits in the exponent since the multiplication operation only happens
when the bit is 1. One way of reducing the execution time in then to represent the exponent using another
representation which reduces the number of non-zero digits and thus the number of multiplications.

The NAF representation precisely aims at reducing the Hamming weight of a scalar, i.e., the number
of non-zero digits in the representation of that scalar.

Definition 26 (NAF representation). For any k ∈ Z, a representation k =
∑∞
j=0 kj2

j is called a
NAF if kj ∈ {0,±1} and kjkj+1 = 0 for all j ≥ 0.

Every k has a unique NAF representation. The algorithm to convert k into its NAF form is presented
in Algorithm 14.

The windowed-NAF (wNAF) representation even further reduces the Hamming weight of the scalar
by considering larger digits. The digits kj from the definition given above are not taken from the set
{0,±1} anymore but from the larger set {0,±1,±3, · · · ,±2w − 1} where w is the chosen window. The
scalar k is converted into wNAF form using Algorithm 15.

136



Algorithm 14 NAF algorithm
Input: k ∈ Z+

Output: NAF representation of k
1: i = 0
2: while k > 0 do
3: if k (mod 2) = 1 then
4: ki = 2− (k (mod 4))
5: k = k − ki
6: else
7: ki = 0

8: k = k/2
9: i = i+ 1

Algorithm 15 wNAF representation
Input: k ∈ Z+, w ∈ N
Output: wNAF representation of k
1: i = 0
2: while k > 0 do
3: if k (mod 2) = 1 then
4: ki = k (mod 2w+1)
5: if ki ≥ 2w then
6: ki = ki − 2w+1

7: k = k − ki
8: else
9: ki = 0

10: k = k/2
11: i = i+ 1

We give an example of the integer 23 expressed in binary, NAF and 3NAF representations.

Example 11. In binary, we can write

23 = 24 + 22 + 21 + 20 = (1, 0, 1, 1, 1),

whereas in NAF-representation, we have

23 = 25 − 23 − 20 = (1, 0,−1, 0, 0,−1).

With w = 3, the wNAF representation gives

23 = 24 + 7× 20 = (1, 0, 0, 0, 7).

The number of non-zero coefficients in these three representations of 23 is minimized for the 3NAF
representation.

The (w)NAF representation can then be used to further improve the execution time of exponentiation.
We provide the pseudo-code for the exponentiation algorithm using the (w)NAF form in Algorithm 16.

Algorithm 16 Exponentiation with wNAF form
Input: window size w and integer k = (k0, k1, · · · , kn) in its wNAF form, x ∈ N.
Output: xk

1: Pre-compute xd = xd for all d = 3, 5, 7, · · · 2w−1 − 1.
2: c← 1.
3: for i = 0 to n do
4: c = c2

5: if ki 6= 0 then
6: c← c× xki
7: return c

The (w)NAF representation is well suited to fast exponentiation and thus has been used in many
implementations. Further improvements to these methods are given in [Möl03].

Booth recoding. The Booth recoding is a similar recoding technique for a scalar k where recoding
with a window size w represents the scalar as a sequence of digits ki such that −2w−1 ≤ ki ≤ 2w−1 and
k =

∑
i 2wiki. This encoding will be used for the scalar multiplication in the quoting enclave of SGX, see

137



Chapter 7.

We now go over microarchitectural side-channel attacks with a particular emphasize on cache timing
attacks.

Microarchitectural side-channel attacks. Microarchitectural side-channel attacks recover secret
information by artificially creating observable contentions between different CPU execution units. In-
troduced over a decade ago [Pag02, TTMH02, TSS+03, Per05, Ber05, OST06], they have since been
used to break the security of many real-world systems. Examples of targets include cryptographic primi-
tives [ASK07, AS08, BvSY14], measurement of keystroke timings [LGS+16, LGS+17], website fingerprint-
ing [GZES17]. Researchers have also demonstrated attacks within a variety of ecosystems: from within the
target’s browser [OKSK15, AKM+15, GMM16], from inside or against SGX enclaves [XCP15, LSG+17,
VBWK+17, SWG+17, MIE17, BMD+17, MES18], or even on third party compute clouds [LYG+15,
IAES15, IGI+16]. More recently, microarchitectural cache attacks have been combined with speculative
execution to read sensitive data across security domains, such as kernel data [LSG+18, KGG+18].

In order for such an attack to work, there must be microarchitectural elements (eg; cache lines,
hardware buffers) shared between the victim and the attacker’s application, and the elements must
further have data-dependent state, i.e., the latter changes depending on the data being processed. The
most commonly observed microarchitectural elements are shared cache components. Cache attacks exploit
contention on a shared cache to infer secret information from unsuspecting processes. They can be realized
in certain scenarios wherein adversary and benign threads share access to the same cache. Moreover, the
aforementioned data-dependent state must be observable via one (or multiple) side channels.

Many microarchitectural side-channel attacks use variations in execution time as the source of leakage.
This type of attack has been extensively researched since Kocher’s [Koc96] seminal work. Timing attacks
rely on the influence that microarchitectural elements have on execution time of certain operations. For
example, a malicious process can, by measuring access time to shared or its own data, infer if a victim
process has accessed related regions of the cache. The resulting side channel leaks information about the
memory access patterns of the victims which can be exploited to attack implementations of cryptographic
schemes such as AES [OST06], RSA [AS08], and (EC)DSA [BvSY14].

Public-key cryptographic protocols are a common target for timing-attack research. For a timing
attack to successfully recover the secret key, the running time of certain cryptographic operations must
depend to some extent on the secret key. Moreover, key recovery often relies on the assumption that a
large amount of the same operation can be carried out without the key being changed.

Cache attacks on modular exponentiation. There are many variants of these attacks, but they all
share in common that the attacker is able to execute code on a CPU that is co-located with the victim
process and shares a CPU cache. While the victim code executes, the attacker measures the amount of
time that it takes to load information from locations in the cache, and thus deduces information about
the data that the victim process loaded into those cache locations during execution. In the context of the
modular exponentiation or scalar addition algorithms discussed above, a cache attack on a vulnerable
implementation might reveal whether a multiply operation was executed at a particular bit location if
the attacker can detect whether the code to execute the multiply instruction was loaded into the cache.
Alternatively, for a pre-computed digit representation of the number, the attacker may be able to use a
cache attack to observe the digit values that were accessed [ASK07, AS08, BvSY14].

We now recall three main types of cache attacks.

Evict+Time The cache attack methodology measures the difference in execution time of the victim’s
code to determine whether the victim accessed a memory location that maps to one of the evicted cache
sets. Evict+Time has been successfully used to attack cryptographic protocols such as AES [OST06,
TOS10], for example. The methodology is as follows:

1. Evict. The attacker evicts a specific cache set of the victim from the cache.

138



2. Time. A variation in the execution time indicates that the victim is accessing data which maps
to the cache set previously evicted by the attacker.

Prime+Probe This cache attack methodology measures the difference in time it takes to refill a given
cache set. It does not rely on any shared memory addresses between the attacker and the victim [Per05,
OST06]. Apart from cryptographic protocols, Prime+Probe has also been demonstrated to be effective at
obtaining sensitive information in cloud environments [LYG+15, IAES15, YKSA15]. The Prime+Probe
methodology works as follows:

1. Prime. The attacker fills relevant cache sets by sequentially loading memory addresses that map
to the same set.

2. Victim Memory Access. The attacker waits for the victim to perform secret-dependent stores
to memory. When the victim stores this data, it evicts some of the attacker’s cache lines from the
targeted sets.

3. Probe. The attacker reloads the previously cached memory addresses and measures the access
times to each cache set. A longer access time to a set corresponds to a victim access to that
particular set. When the value of a secret variable affects the access patterns to memory, these
patterns reveal information about the secret.

Flush+Reload This attack [YF14, YB14] follows an attack methodology similar to Prime+Probe,
however it does not require the attacker to evict any cache set or line. Instead, it measures the difference
in time when reloading a memory line. The attacker targets a specific region in memory which is shared
with the victim. This attack does not require the knowledge of physical addresses, which is a common
limitation of other cache attacks. Flush+Reload has been also extensively used to attack cryptographic
primitives such as RSA [CAPGATB19], DSA [GBY16], ECDSA [ABF+16, GB17], AES [GBK11], and
PRNGs [CKP+19]. The methodology goes as follows.

1. Flush. The monitored memory line is flushed from the cache hierarchy.

2. Victim Memory Access. The attacker waits for the victim to access the memory line.

3. Probe. The spy reloads the memory line, measuring the time it takes. If the reloading operation
is fast, then the victim has accessed the memory line and thus the line is available in the cache. On
the other hand, a long reload means that the victim has not accessed the memory line, and thus
the line has to be brought from memory.

Flush+Flush [GMWM16] and Evict+Reload [GSM15, LGS+16] are two variants of Flush+Reload
which we do not detail in this chapter.

Other attacks on modular exponentiation. Other families of side channels that have been used to
exploit vulnerable modular exponentiation implementations include power analysis and differential power
analysis attacks [KJJ99, KJJR11], electromagnetic radiation [QS01], acoustic emanations [GST14], raw
timing [Koc96], photonic emission [FH08], and temperature [HS14]. These attacks similarly exploit code
or circuits whose execution varies based on secrets.

Cold boot and memory attacks. An entirely different class of side-channel attacks that can re-
veal partial information against keys include attacks that may leak the contents of memory. These
include cold boot attacks [HSH+08], DMA (Direct Memory Access), Heartbleed, and Spectre/Melt-
down [LSG+18, KHF+19]. While these attacks may reveal incomplete information, and thus serve as
theoretical motivation for some of the algorithms we discuss, most of the vulnerabilities in this family
of attacks can simply be used to read arbitrary memory with near-perfect precision, and cryptanalytic
algorithms are rarely necessary.

139



Length-dependent operations. A final vulnerability class is implementations whose behavior de-
pends on the length of a secret value, and thus variations in the behavior may leak information about
the number of leading zeros in a secret. A simple example is copying a secret key to a buffer in such a
way that it reveals the bit length of a secret key. In another example, the Raccoon attack observes that
TLS versions 1.2 and below strips leading zeros from the Diffie-Hellman shared secret before applying the
key derivation function, resulting in a timing difference depending on the number of hash input blocks
required for the length of the secret. [MBA+20]

6.2 Key recovery methods for RSA
Let us first focus on the well-known RSA cryptosystem and start by recalling how it works.

6.2.1 RSA Preliminaries

Parameter Generation. To generate an RSA key pair, implementations typically start by choosing
the public exponent e. By far the most common choice is to simply fix e = 65537. Some implementations
use small primes like 3 or 17. Almost no implementations use public exponents larger than 32 bits. This
means that attacks that involve brute forcing values less than e are generally feasible in practice.

In the next step, the implementation generates two random primes p and q such that p− 1 and q− 1
are relatively prime to e. The public modulus is N = pq. The private exponent is then computed as

d = e−1 (mod (p− 1)(q − 1)).

The public key is the pair (e,N). In theory, the secret key is the pair (d,N), but in practice many
implementations store keys in a data structure including much more information. For example, the
PKCS#1 private key format includes the fields p, q, dp = d (mod p − 1), dq = d (mod q − 1), and
qinv = q−1 (mod p) to speed encryption using the Chinese Remainder Theorem.

Encryption and Signatures. In textbook RSA, Alice encrypts the message m to Bob by computing
c = me (mod N). In practice, the message m is not a “raw” message, but has first been transformed
from the content using a padding scheme. The most common encryption padding scheme in network
protocols is PKCS#1v1.5, but OAEP [BR95] is also sometimes used or specified in protocols. To decrypt
the encrypted ciphertext, Bob computes m = cd (mod N) and verifies that m has the correct padding.

To generate a digital signature, Bob first hashes and pads the message he wishes to sign using a
padding scheme like PKCS#1v1.5 signature padding (most common) or PSS (less common). Let m be
the hashed and padded message of this form. Then Bob generates the signature as s = md (mod N).
Alice can verify the signature by computing the value m′ = se (mod N) and verifying that m′ is the
correct hashed and padded value.

Since encryption and signature verification only use the public key, decryption and signature genera-
tion are the operations typically targeted by side-channel attacks.

RSA-CRT. To speed up decryption, instead of computing cd (mod N) directly, implementations often
use the Chinese remainder theorem (CRT). RSA-CRT splits the exponent d into two parts dp = d
(mod p− 1) and dq = d (mod q − 1).

To decrypt using the Chinese remainder theorem, Alice would compute mp = cdp (mod p) and mq =
cdq (mod q). The message can be recovered with the help of the pre-computed value qinv = q−1 (mod p)
by computing

m = mpqqp +mq(1− qqp) = (mp −mq)qqinv +mq (mod N).

This is called Garner’s formula [Gar59].

Question 79. What are the relationships between the different RSA key elements?

For the purpose of secret key recovery, we typically assume that the attacker knows the public key. RSA
keys have a lot of mathematical structure that can be used to relate the different components of the public
and private keys together for key recovery algorithms. The RSA public and private keys are related to
each other as

ed ≡ 1 (mod (p− 1)(q − 1)).

140



The modular equivalence can be removed by introducing a new variable k to obtain an integer relation

ed = 1 + k(p− 1)(q − 1) = 1 + k(N − (p+ q) + 1).

We know that d < (p − 1)(q − 1), so k < e. The value of k is not known to the attacker, but since
generally e ≤ 65537 in practice it is efficient to brute force over all possible values of k.

For attacks against the CRT coefficients dp and dq, we can obtain similar relations

edp = 1 + kp(p− 1) and edq = 1 + kq(q − 1), (6.1)

for some integers kp < e and kq < e. Brute forcing over two independent 16-bit values can be burdensome,
but we can relate kp and kq as follows.

Rearranging the two relations, we obtain edp − 1 − kp = kpp and edq − 1 − kq = kqq. Multiplying
these together, we get

(edp − 1 + kp)(edq − 1− kq) = kpkqN.

Reducing the above modulo e, we get

(kp − 1)(kq − 1) ≡ kpkqN (mod e). (6.2)

Thus given a value for kp, we can solve for the unique value of kq (mod e), and for applications that
require brute forcing values of kp and kq we only need to brute force at most e pairs [IGI+15].

The multiplier k also has a nice relationship to these values. Multiplying the relations from Equa-
tion 6.1 together, we have

(edp − 1)(edq − 1) = kp(p− 1)kq(q − 1)

Substituting (p− 1)(q − 1) = (ed− 1)/k and reducing modulo e, we can relate the coefficients as

k ≡ −kpkq (mod e).

Any of the secret values p, q, d, dp, dq, or qinv suffices to compute all of the other values when the
public key (N, e) is known.

From either p or q, computing the other values is straightforward. For small e, N can be factored
from d by computing

ed = 1 + k(p− 1)(q − 1) = 1 + k(N − (p+ q) + 1) (6.3)

The integer multiplier k can be recovered by rounding d(ed − 1)/Nc. Once k is known, then Equa-
tion 6.3 can be rearranged to solve for s = p+ q. Once s is known, we have

(p+ q)2 = s2 = p2 + 2N + q2,

and
s2 − 4N = p2 − 2N + q2 = (p− q)2.

Then N can be factored by computing gcd((p+ q)− (p− q), N).
When e is small, p can be computed from dp as

p = gcd((edp − 1)/kp + 1, N)

where kp can be brute forced from 1 to e. If kp is not known and is too large to brute force, with high
probability for a random a,

p = gcd(aedp−1 − 1, N).

Factoring from qinv is more complex. As noted in [HS09], qinv satisfies qinvq2 − q ≡ 0 (mod N), and
q can be recovered using Coppersmith’s method, described below.

141



6.2.2 RSA Key Recovery with Consecutive bits known

This section covers techniques for recovering RSA private keys when large contiguous portions of the
secret keys are known. The main technique used in this case is lattice basis reduction introduced in
Chapter 2.

For the key recovery problems in this section, we can typically recover a large unknown chunk of bits
of an unknown secret key value p, d (mod p− 1), or d. We typically assume that the attacker has access
to the public key (N, e) but does not have any other auxiliary information, about q or d (mod q− 1), for
example.

Knowledge of large contiguous portions of secret keys is unlikely to arise in side channels that involve
noisy measurements, but could arise in scenarios where secrets are being read out of memory that got
corrupted in an identifiable region. They can also help make attacks more efficient if a high cost is paid
to recover known bits.

6.2.2.1 Warm-up: Lattice attacks on low-exponent RSA with bad padding.

The main algorithmic technique used for RSA key recovery with contiguous bits is to formulate the
problem as finding a small root of a polynomial modulo an integer, and then to use lattice basis reduction
to solve this problem.

In order to introduce the main tool of using lattice basis reduction to find roots of polynomials, we
will start with an illustrative example for the concrete application of breaking small-exponent RSA with
known padding. In later sections we will show how to modify the technique to cover different RSA key
recovery scenarios.

The original formulation of this problem is due to Coppersmith [Cop96a]. Howgrave-Graham [HG97]
gave a dual approach that we find easier to explain and easier to implement. May’s survey [May10]
contains a detailed description of both Coppersmith and Howgrave-Graham algorithms.

To set up the problem, we have an integer N , and a polynomial f(x) of degree k that has a root r
modulo N , that is, f(r) ≡ 0 (mod N). We wish to find r. Finding roots of polynomials can be done
efficiently modulo primes [LLL82], so this problem is easy to solve if N is prime or the prime factorization
of N is known. The Coppersmith/Howgrave-Graham methods are generally of interest when the prime
factorization of N is not known. It gives an efficient algorithm for finding all small roots (if they exist)
modulo N of unknown factorization.

Problem setup. For our toy example, we will use the 96-bit RSA modulus

N = 0x98664cf0c9f8bbe76791440d

and e = 3. Consider a broken PKCS#1v1.5-esque RSA encryption padding scheme that pads a message
m as

pad(m) = 0x01FFFFFFFFFFFFFFFF00 || m

with the message m concatenated at the end. Now imagine that we have obtained a ciphertext

c = 0xeb9a3955a7b18d27adbf3a1

and we wish to recover the unknown message m.

142



pad(m)

c

a m

N

Figure 6.1: Illustration of low-exponent RSA message recovery attack setup. The attacker knows the
public modulus N , a ciphertext c, and the padding a prepended to the unknown message m before
encryption. The attacker wishes to recover m.

Cast the problem as finding roots of a polynomial. Let

a = 0x01FFFFFFFFFFFFFFFF0000

be the known padding string, offset to the correct byte location. We also know the length of the message, in
this casem < 216. Thus we have that c = (a+m)3 (mod N), for unknown smallm. Let f(x) = (a+x)3−c.
We have set up the problem so that we wish to find a small root m satisfying f(m) ≡ 0 (mod N) for the
polynomial

f(x) =x3 + 0x5fffffffffffffffd0000x2 + 0x6f1c485f406ba1c069460efex

+ 0x203211880cdc43afe1c5c5f9

We have reduced the coefficients modulo N so that they will fit on the page.

Construct a lattice. Let the coefficients of f be f(x) = x3 + f2x
2 + f1x + f0. Let M = 216 be an

upper bound on the size of the root m. We construct the matrix

B =


M3 f2M

2 f1M f0

0 NM2 0 0
0 0 NM 0
0 0 0 N


We then apply the LLL lattice basis reduction algorithm to the matrix. The shortest vector of the

reduced basis is

v =(−0x66543dd72697M3,−0x35c39ac91a11c04M2, 0x3f86f973d67d25eae138M,

−0x10609161b131fd102bc2a8)

Extract a polynomial from the lattice and find its roots. We then construct the polynomial g
using the coefficients of the vector v,

g(x) =−0x66543dd72697x3 − 0x35c39ac91a11c04x2

+ 0x3f86f973d67d25eae138x− 0x10609161b131fd102bc2a8

The polynomial g has one integer root, 0x42, which is the desired solution for m.

This specific 4 × 4 lattice construction works to find roots up to size N1/6 as we will explain just
below. For the small key size we used in our example, this is only 16 bits, but since it scales directly with
the modulus size, this same lattice construction would suffice to learn 170 unknown bits of message for a
1024-bit RSA modulus, or 341 bits of message for a 2048-bit RSA modulus. Lattice reduction on a 4× 4
lattice basis is instantaneous.

143



Question 80. Why does this work?

The rows of this matrix correspond to the coefficient vectors of the polynomials f(x), Nx2, Nx, and N .
We know that each of these polynomials evaluated at x = m will be 0 modulo N . Each column is scaled
by a power of M , so that the `1 norm of any vector in this lattice is an upper bound on the value of the
corresponding (un-scaled) polynomial evaluated at m. For a vector v = (v3M

3, v2M
2, v1M,v0) in the

lattice,
|f(m)| = |v3m

3 + v2m
2 + v1m+ v0| ≤ |v3M

3|+ |v2M
2|+ |v1M |+ |v0| = ||v||1

for any |m| ≤M .
We have constructed the lattice so that every polynomial g we extract from it has the property that

g(m) ≡ 0 (mod N). We have also constructed our lattice so that the length of the shortest vector in a
reduced basis will be less than N . This imposes a condition on the bound M as we explain just below.
The only integer multiple of N less than N is 0, so by construction the polynomial corresponding to this
short vector satisfies g(m) = 0 over the integers, not just modulo N . Since finding roots of polynomials
over the integers, rationals, reals, and complex numbers can be done in polynomial time, we can compute
the roots of this polynomial and check which of them is our desired solution.

This method will always work if the lattice is constructed properly. That is, we need to ensure that the
reduced basis will contain a vector of length less than N . For this example, detB = M6N3. Heuristically,
the LLL algorithm will find a vector of `2 norm ||v||2 ≤ 1.02n(detB)1/ dimB . We ignore the 1.02n factor,
and the difference between the `2 and `1 norms for the moment. Then the condition we wish to satisfy is

g(m) ≤ ||v||2 ≤ (detB)1/n < M

For our example, we have (detB)1/ dimL = (M6N3)1/4 < N . Solving for M , this will be satisfied when
M < N1/6. In this case, N has 96 bits, and m is 16 bits, so the condition is satisfied.

Question 81. Up to what limit does this method work?

This can be extended to N1/e, where e is the degree of the polynomial f by using a larger dimension
lattice. Howgrave-Graham’s dissertation [HG98] and May’s survey [May10] give detailed explanations of
this method and improvements.

6.2.2.2 Factorization from consecutive bits of p.

In this section we show how to use lattices to factor the RSA modulus N if a large portion of contiguous
bits of one of the factors (without loss of generality p) is known.

q

p

2`b r

N

Figure 6.2: Factorization of N = pq given contiguous known most significant bits of p.

Coppersmith solves this problem in [Cop96a] but we find the reformulation from Howgrave-Graham
as “approximate integer common divisors” [HG01] simpler to apply, and will give that construction here.

Problem setup. Let N = pq be an RSA modulus with equal-sized p and q. Choosing an example with
numbers small enough to fit on the page, we have a 240-bit RSA modulus

N = 0x4d14933399708b4a5276373cb5b756f312f023c43d60b323ba24cee670f5.

144



We assume N is known and we also know a large contiguous portion of the most significant bits b of
p, so that p = a+ r, where we do not know r but do know the value a = 2`b. Here ` = 30 is the number
of unknown bits, or equivalently the left shift of the known bits.

In our example, we have

a = 0x68323401cb3a10959e7bfdc0000000.

Cast the problem as finding the roots of a polynomial. Let f(x) = a+ x. We know that there
is some value r such that f(r) = p ≡ 0 (mod p). We do not know p, but we know that p divides N and
we know N . We also know that the unknown r is small, and in particular |r| < R for some bound R that
is known. Here, R = 230.

Construct a lattice. We can form the lattice basis

B =

R2 Ra 0
0 R a
0 0 N

 .

We then run the LLL algorithm on our lattice basis B. Let v = (v2R
2, v1R, v0) be the shortest vector in

the reduced basis. In our example, we get the vector

v =(−0x17213d8bc94R2,−0x1d861360160a4f86181R,
0xf9decdc1447c3f3843819a5d).

Extract a polynomial and find the roots. We form a polynomial f(x) = v2x
2 + v1x+ v0. For our

example,
f(x) =−0x17213d8bc94x2 − 0x1d861360160a4f86181x

+ 0xf9decdc1447c3f3843819a5d.

We can then calculate the roots of f . In this example, f has one integer root, r = 0x873209. We can
then reconstruct a+ r and verify that gcd(a+ r,N) factors N .

This 3 × 3 lattice construction works for any |r| < p1/3, and directly scales as p increases. In our
example, we chose p and q so that they have 120 bits, and r has 30 bits. However, this same construction
will work to recover 170 bits from a 512-bit factor of a 1024-bit RSA modulus, or 341 bits from a 1024-bit
factor of a 2048-bit RSA modulus.

Question 82. Why does this work?

The rows of this matrix correspond to the coefficient vectors of the polynomials x(x + a), x + a, and
N . We know that each of these polynomials evaluated at x = r will be 0 modulo p, and thus every
polynomial corresponding to a vector in the lattice has this property. As in the previous example, each
column is scaled by a power of R, so that the `1 norm of any vector in this lattice is an upper bound on
the value of the corresponding (un-scaled) polynomial evaluated at r.

If we can find a vector in the lattice of length less than p, then it corresponds to a polynomial g
that must satisfy g(r) < p. Since by construction, g(r) = 0 (mod p), this means that g(r) = 0 over the
integers.

We compute the determinant of the lattice to verify that it contains a sufficiently small vector. For
this example, detB = R3N . This means we need (detB)1/ dimL = (R3N)1/3 < p. Solving for R, this
gives R < p1/3. For an RSA modulus we have p ≈ N1/2, and thus we get the condition R < N1/6.

Question 83. Up to what limit does this method work?

This method works up to R < p1/2 at the limit by increasing the dimension of the lattice. This is
accomplished by taking higher multiples of f and N . Howgrave-Graham’s dissertation [HG98] and May’s
survey [May10] provide details on how to do this.

145



6.2.2.3 RSA key recovery from least significant bits of p

It is also straightforward to adapt this method to deal with a contiguous chunk of unknown bits in the
least significant bits of p. If the chunk begins at bit position `, the input polynomial will have the form
f(x) = 2`x+ a. This can be multiplied by 2−` (mod N) and solved exactly as above.

q

p

N

Figure 6.3: Factorization of N = pq given contiguous known least significant bits of p.

6.2.2.4 RSA key recovery from middle bits of p

RSA key recovery from middle bits of p is somewhat more complex than the previous examples, because
there are two unknown chunks of bits in the most and least significant bits of p.

q

p

2trm r`a

N

Figure 6.4: Factorization of N = pq given contiguous known bits of p in the middle.

Problem setup. Assume we know a large contiguous portion of the middle bits of p, so that p =
a+ r`+ 2trm, where a is an integer representing the known bits of p, and r` and rm are unknown integers
representing the least and most significant bits of p that we wish to solve for. The value t is the starting
bit position of the unknown most significant bits. We know that |r`| < R and |rm| < R for some bound
R.

As a concrete example, let

N =0x3ab05d0c0694c6bd8ee9683d15039e2f738558225d7d37f4a601bcb9

29ccfa564804925679e2f3542b.

be a 326-bit RSA modulus. Let

a = 0xc48c998771f7ca68c9788ec4bff9b40b80000.

be the middle bits of one of its factors p. There are 16 unknown bits in the most and least significant bit
positions. Thus we know that R = 216 in our concrete example. We wish to recover p.

Cast the problem as finding solutions to a polynomial. In the previous examples, we only had
one variable to solve for. Here, we have two, so we need to use a bivariate polynomial. We can write
down

f(x, y) = x+ 2ty + a,

so that f(r`, rm) = p.
In our concrete example, the factor p has 164 bits, so we have f(x, y) = x + 2148y + a. We hope

to construct two polynomials g1(x, y) and g2(x, y) satisfying g1(r`, rm) = 0 and g2(r`, rm) = 0 over the
integers. Then we can solve the system for the simultaneous roots.

146



Construct a lattice. As before, we will use our input polynomial f and the public RSA modulus N
to construct a lattice. Unfortunately for the simplicity of our example, the smallest polynomial that is
guaranteed to result in a nontrivial bound on the solution size for our desired roots has degree 3, and
results in a lattice of dimension 10.

As before, each column corresponds to a monomial that appears in our polynomials, and each row
corresponds to a polynomial that evaluates to 0 mod p at our desired solution. In our example, we
will use the polynomials f3, f2y, fy2, y3N, f2, fy, y2N, f, yN , and N . The monomials in the columns are
x3, x2y, xy2, y3, x2, xy, y2, x, y, and 1. Each column is scaled by the appropriate power of R.

B =



R3 3 · 2tR3 3 · 22tR3 23tR3 3aR2 6 · 2taR2 3 · 22taR2 3a2R 3 · 2ta2R a3

0 R3 2 · 2tR3 22tR3 0 2aR2 2 · 2taR2 0 a2R 0
0 0 R3 2tR3 0 0 aR2 0 0 0
0 0 0 R3N 0 0 0 0 0 0
0 0 0 0 R2 2 · 2tR2 22tR2 2aR 2 · 2taR a2

0 0 0 0 0 R2 2tR2 0 aR 0
0 0 0 0 0 0 R2N 0 0 0
0 0 0 0 0 0 0 R 2tR a
0 0 0 0 0 0 0 0 RN 0
0 0 0 0 0 0 0 0 0 N


.

We reduce this matrix using the LLL algorithm, and reconstruct the bivariate polynomials corre-
sponding to each row of the reduced basis. Unfortunately, these are too large to fit on a page.

Solve the system of polynomials to find common roots. Heuristically, we would hope to only need
two sufficiently short vectors and then compute the resultant of the corresponding polynomials or use a
Gröbner basis to find the common roots, but in our example the two shortest vectors are not algebraically
independent. In this case it suffices to use the first three vectors. Concretely, we construct an ideal over
the ring of bivariate polynomials with integer coefficients whose basis is the polynomials corresponding to
the three shortest vectors in the reduced basis for L(B) above, and then call a Gröbner basis algorithm
on it. For this example, the Gröbner basis is exactly the polynomials (x − 0x339b, y − 0x5a94), which
reveals the desired solutions for x = r` and y = rm.

In this example, the nine shortest vectors all vanish at the desired solution, so we could have con-
structed our Gröbner basis from other subsets of these short vectors.

Question 84. Why does this work?

The determinant of our lattice is detB = R20N4, and the lattice has dimension 10. We hope to find
two vectors v1 and v2 of length approximately detB1/ dimB . This is not guaranteed to be possible, but
for random lattices we expect the lengths of the vectors in a reduced basis to have close to the same
lengths. The `1 norms of the vectors v1 and v2 are upper bounds on the magnitude of the corresponding
polynomials fv1

(x, y), fv2
(x, y) evaluated at the desired roots r`, rm. In order to guarantee that these

vanish, we want the inequality
|fvi(r`, rm)| ≤ ||vi||1 < p ≈

√
N

to hold.
Thus the desired condition for success is

detB1/ dimB <
√
N,(

R20N4
)1/10

< N1/2,

R20 < N.

In our example, N was 326 bits long, and we chose R to have 16 bits.

This attack was applied in [BCC+13] to recover RSA keys generated by a faulty random number
generator that generated primes with predictable sequences of bits.

147



6.2.2.5 RSA key recovery from multiple chunks of bits of p

The above idea can be extended to handle more chunks of p at the cost of increasing the dimension of
the lattice. Each unknown “chunk” of bits introduces a new variable in the linear equation that will be
solved for p. At the limit, the algorithm requires 70% of the bits of p divided into at most log logN
blocks [HM08].

q

p

N

Figure 6.5: Factorization of N = pq given multiple chunks of p.

6.2.2.6 Open problem: RSA key recovery from many nonconsecutive bits of p

The above methods scale poorly with the number of chunks of known bits. It is an open problem to
develop a sub-exponential time method to recover an RSA key or factor the RSA modulus N with more
than log logN unknown chunks of bits, if these bits are only known about, say, one factor p of N . If
information is known about both p and q or other fields of the RSA private key, then the methods of
Section 6.2.3.1 may be applicable.

Open Question 5. Can we recover an RSA key or factor an RSA modulus N with more than log logN
unknown chunks of bits coming from one factor of N?

N

q

p

Figure 6.6: Efficient factorization of N = pq given many chunks of p and no information about q is an
open problem.

6.2.2.7 Partial recovery of RSA dp

Recovering the CRT coefficient dp = d (mod p − 1) from a large contiguous chunk of bits can be done
using the approach given in Section 6.2.2.2. We illustrate the method in the case of known most significant
bits.

dq

dp

2`b r

N

Recovering RSA dp = d (mod (p− 1)) given many contiguous bits of dp.

Problem setup. Let

N = 0x4d14933399708b4a5276373cb5b756f312f023c43d60b323ba24cee670f5

148



be a 240-bit RSA modulus. We will use public exponent e = 65537.
In this problem, we are given some of the most significant bits b of dp, and we want to recover the

rest. As before, let ` be the number of least significant bits of dp we need to recover, so that there is
some value a = 2`b with a+ r = dp for some r < 2`. For our concrete example, we have

a = 0x25822d06984a06be5596fcc0000000.

Cast the problem as finding the roots of a polynomial We start with the relation edp ≡ 1
(mod p− 1) and rewrite it as an integer relation by introducing a new variable kp as

edp = 1 + kp(p− 1). (6.4)

The integer kp is unknown, but we know that kp < e since dp < (p− 1). In our example, and typically in
practice, we have e = 65537, so we will run the attack for all possible values of 1 ≤ kp < 65537. With the
correct parameters, we are guaranteed to find a solution for the correct value of kp. For other incorrect
guesses of kp, in practice the attack is unlikely to result in any solutions found, but any spurious solutions
that arise can be eliminated because they will not result in a factorization of N .

We can rearrange Equation 6.4, with e−1 computed modulo N such as

e(a+ r)− 1 + kp ≡ 0 (mod p),

a+ r + e−1(kp − 1) ≡ 0 (mod p).

Let A = a+ e−1(kp − 1). Then we wish to find a small root r of the polynomial f(x) = A+ x modulo p,
where |r| < R. For our concrete example, we have R = 230 and kp = 23592, so

A = 0x8ffe9143aa4c189787058057a0784576848f3f28d79a83169f72a0550699112.

Construct a lattice. Since the form of the problem is identical to the previous section, we use the
same lattice construction

B =

R2 RA 0
0 R A
0 0 N

 .

We apply the LLL algorithm to this basis and take the shortest vector in the reduced basis. For our
example, this is

v = (−1306dd0a37ecR2, 52955e433295de64273R,−31db63ed6f29f4d8f4d1501c47).

We construct the corresponding polynomial

f(x) = −1306dd0a37ecx2 + 52955e433295de64273x− 31db63ed6f29f4d8f4d1501c47.

Computing the roots of f , we discover that r = 0x39d9b141 is among them, and that gcd(A+ r,N) = p.

Question 85. Up to what limit does this method work?

At the limit, this technique can work up to R < p1/2 [BM03] by increasing the dimension of the lattice
with higher degree polynomials and higher multiplicities of the root.

6.2.2.8 Partial recovery of RSA d from most significant bits is not possible

Partial recovery for d varies somewhat depending on the bits that are known and the size of e. Since e
is small in practice, we will focus on that case here.

149



d

N

Figure 6.7: For small exponent e, the most significant bits of d do not allow full key recovery.

Most significant bits of d. When e is small enough to brute force, the most significant half of bits of d
can be recovered easily with no additional information. This implies that if full key recovery were possible
from only the most significant half of bits of d, then small public exponent RSA would be completely
broken. Since small public exponent RSA is not known to be insecure in general, this unfortunately
means that no such key recovery method is possible for this case.

Consider the RSA equation

ed = 1 (mod (p− 1)(q − 1)),

ed = 1 + k(p− 1)(q − 1),

ed = 1 + k(N − (p+ q) + 1),

d = kN/e− (k(p+ q − 1)− 1)/e.

Since p + q ≈
√
N , the second term affects only the least significant half of the bits of d, so the value

kN/e shares approximately the most significant half of its bits in common with d.
On the positive side, this observation allows the attacker to narrow down possible values for k if the

attacker knows any most significant bits of d for certain. See Boneh, Durfee, and Frankel [BDF98] for
more details.

6.2.2.9 Partial recovery of RSA d from least significant bits

For low-exponent RSA, if an adversary knows the least significant t bits of d, then this can be transformed
into knowledge of the least significant t bits of p, and then the method of Section 6.2.2.3 can be applied.
This algorithm is due to Boneh, Durfee, and Frankel [Bon98].

d

d0

N

Figure 6.8: Recovering RSA p given contiguous least significant bits of d.

Assume the adversary knows the t least significant bits of d; call this value d0. Then

ed0 ≡ 1 + k(N − (p+ q) + 1) (mod 2t).

Let s = p+ q. The adversary tries all possible values of k, 1 < k < e to obtain e candidate values for the
t least significant bits of s. Then for each candidate s, the least significant bits of p are solutions to the
quadratic equation

p2 − sp+N ≡ 0 (mod 2t).

Let a be a candidate solution for the least significant bits of p. Putting this in the context of Section 6.2.2.3,
the attacker wishes to solve f(x) = a + 2tx ≡ 0 (mod p). This can be multiplied by 2−t (mod N) and
the exact method of Section 6.2.2.3 can be applied to recover p. Since at the limit, the methods of
Section 6.2.2.3 work to recover N1/4 bits of p, this method will work when as few as N1/4 bits of d are
known.

150



There are more sophisticated lattice algorithms that involve different tradeoffs, but for very small e,
which is typically the case in practice, they require nearly all of the least significant bits of d to be
known [BM03].

6.2.3 Non-consecutive bits known with redundancy
This section covers key recovery in the case that many non-consecutive bits of secret values are known
or need to be recovered. The lattice methods covered in the previous section can be adapted to recover
multiple chunks of unknown key bits, but at a high cost. The lattice dimension increases with the number
of chunks, and when a large number of bits is to be recovered, the running time can be exponential in
the number of chunks.

In this section, we explore a different technique that allows a different tradeoff. In this case, the
attacker has knowledge of many non-contiguous bits of secret key values, and knows these for multiple
secret values of the key. The attacker might have learned parts of both p and q, or d (mod p− 1) and d
(mod q − 1), for example.

6.2.3.1 Random known bits of p and q

q

p

Figure 6.9: Factorization of N = pq given non-consecutive bits of both p and q.

We begin by analyzing a case that is less likely to arise in practice, the case of random erasures of bits of
p and q, in order to give the main ideas behind the algorithm in the simplest setting.

The main technique used for these cases is a branch and prune algorithm. The idea behind the branch
and prune algorithm is to write down an integer relationship between the elements in the secret key and
the public key, and progressively solve for unknown bits of the secret key, starting at the least significant
bits. This produces a tree of solutions. Every branch corresponds to guesses for one or more unknown
bits at a particular solution, and branches are pruned if the guesses result in incorrect relationships to
the public key. This algorithm is presented and analyzed in [HS09].

Problem setup. Let N = 899. Imagine we have learned some bits of p and q, in an erasure model.
For each bit position, we either know the bit value, or we know that we do not know it. For example, we
have

p = t11 t 1,

and

q = t1 t 0t.

Defining an integer relation. The integer relation that we will take advantage of for this example is
N = pq.

Iteratively solve for each bit. The main idea of the algorithm is to iteratively solve for the bits of
the unknowns p and q, starting at the least significant bits. These can then be checked against the known
public value of N .

At the least significant bit, the value is known for p and is unknown for q. There are two options
for the value of q, but only the bit value 1 satisfies the constraint that pq = N (mod 2). The algorithm
then proceeds to the next step, where the value of the second bit is known for q but not for p. Only the
bit value 1 satisfies the constraint pq = N (mod 22), so the algorithm continues down this branch. Since
this generates a tree, the tree can be traversed in depth-first or breadth-first order; depth-first will be
more memory efficient. This is illustrated in Figure 6.10.

151



p = . . . 1
q = · · · t

p = . . . 1
q = . . . 0

p = · · · t 1
q = . . . 01

p = . . . 01
q = . . . 01

p = . . . 111
q = · · · t 01

p = . . . 111
q = . . . 001

p = · · · t 111
q = · · · t 101

p = 1111

q = 1101

p = t1111
q = t1101

p = 11111

q = 01101

p = 01111

q = 11101

p = 01111

q = 01101X

p = 11111

q = 11101

p = 31
q = 29

XXXX

X

X

Figure 6.10: The branch and prune tree for our numeric example. The algorithm begins at the right-hand
node representing the least significant bits, and iteratively branches and prunes guesses for successive bits
moving towards the most significant bits.

The algorithm works because N = pq (mod 2i) for all values of i. Additionally, we want some
assurance that an incorrect guess for a value at a particular bit location should eventually lead to that
branch being pruned. Heuristically, when the ith bits of both p and q are unknown, the tree will branch.
When bit i is known for one but not the other, there will be a unique solution. When the ith bits of
both p and q are known, an incorrect solution has around a 50% probability of being pruned. Thus the
algorithm is expected to be efficient as long as there are not long runs of simultaneous unknown bits.
We assume the length of p and q is known. Once the algorithm has traversed this many bits, the final
solution pq = N can be checked without modular constraints.

When random bits are known from p and q, the analysis of [HS09] shows that the tree of generated
solutions is expected to have polynomial size when 57% of the bits of p and q are revealed at random.
This algorithm can still be efficient if the distribution of bits known is not random, as long as it allows
efficient pruning of the tree. An example would be learning 3 out of every 5 bits of p and q, as in [YGH16].

Paterson, Polychroniadou, and Sibborn [PPS12] give an analysis of the required information for differ-
ent scenarios, and observe that doing a depth-first search is more efficient memory-wise than a breadth-
first search.

6.2.3.2 Random known bits of the Chinese remainder coefficients d (mod p − 1) and d
(mod q − 1).

The description in Section 6.2.3.1 can be extended to recover the Chinese remainder exponents dp = d
(mod p− 1) and dq = d (mod q − 1) using the same technique as the previous section. This is the most
common case encountered in RSA side-channel attacks.

dq

dp

Factorization of N = pq given non-consecutive bits of dp, dq.

Problem setup. Let N = 899 be the RSA public modulus, and e = 17 be the public exponent. Imagine
that the adversary has recovered some bits of the secret Chinese remainder exponents dp = d (mod p−1)
and dq = d (mod q − 1),

dp = t0 t t1, dq = t t t0t

We wish to recover the missing unknown bits of dp and dq, which will allow us to recover the secret
key itself.

152



Define integer relations. We know that edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q − 1). We rewrite
these as integer relations

edp = 1 + kp(p− 1), edq = 1 + kq(p− 1).

We have no information about the values of p and q, but their values are uniquely determined from a
guess for dp or dq. We also know that

pq = N.

The values kp and kq are unknown, so we must brute force them by running the algorithm for all possible
values. We expect it to fail for incorrect guesses, and succeed for the unique correct guess. Equation 6.2
in Section 6.2.1 shows that there is a unique value of kq for a given guess for kp. Since kp < e we need
to brute force at most e pairs of values for kp and kq. In our example, we have kp = 13 and kq = 3,
although this won’t be verified as the correct guesses until the solution is found.

Iteratively solve for each bit. With our integer relations in place, we can then use them to iteratively
solve for each bit of the unknowns dp, dq, p, and q, starting from the least significant bit. We check guesses
for each value against our three integer relations, and at bit i we prune those that do not satisfy the
relations mod 2i. We have three relations and four unknowns, so we generate at most two new branches
at each bit.

edp − 1 + kp ≡ kpp (mod 2i),

edq − 1 + kq ≡ kqq (mod 2i),

pq ≡ N (mod 2i).

Since the values of p and q up to bit i are uniquely determined by our guess for dp and dq up to bit i,
the algorithm prunes solutions based on the relation pq ≡ N (mod 2i). The analysis of this case is then
identical to the case of learning bits of p and q at random.

For incorrect guesses for the values of kp and kq, we expect the equations to act like random constraints,
and thus to quickly become unsatisfiable. Once there are no more possible solutions in a tree, the guess
for kp and kq is known to be incorrect. This is illustrated by Figure 6.11.

6.2.3.3 Recovering RSA keys from indirect information

For this type of key recovery algorithm, it is not always necessary to have direct knowledge of bits of the
secret key values with certainty. It can still be possible to apply the branch-and-prune technique to recover
secret keys even if only “implicit” information is known about the secret values, as long as this implicit
information implies a relationship that can be checked to prioritize or prune candidate key guesses from
the least significant bits. Examples in the literature include [BBG+17], which computes partial sliding
window square-and-multiply sequences for candidate guesses and compares them to the ground truth
measurements, and [MVH+20], which compares the sequence of program branches in a binary GCD
algorithm implementation computed over the cryptographic secrets to a ground truth measurement.

6.2.3.4 Open problem: Random known bits without redundancy

Open Question 6. Can we efficiently recover an RSA secret key when random bits of a factor of N
are known without redundancy?

As mentioned in Section 6.2.2.6, it is an open problem to recover an RSA secret key when many noncon-
secutive chunks of bits need to be recovered, and the bits known are from only one secret key field, with
no additional information from other values. Applying the branch-and-prune methods discussed in this
section to a single secret key value, say a factor p of N , where random bits are known, would result in a
tree with exponentially many solutions unless additional information were available to prune the tree.

6.3 Key recovery methods for DSA and ECDSA
Now that we have presented the key recovery methods for RSA, we move on to the DSA and its elliptic
curve variant ECDSA. The methods used in this context are quite similar in their core ideas. We start
by presenting the protocols.

153



dp = . . . 1
dq = · · · t
p = · · · t
q = · · · t

dp = . . . 1
dq = . . . 0
p = . . . 1
q = . . . 0

dp = · · · t 1
dq = . . . 01
p = · · · t 1
q = · · · t 1

dp = . . . 01
dq = . . . 01
p = . . . 01
q = . . . 01

dp = · · · t 11
dq = · · · t 01
p = · · · t 11
q = · · · t 01

dp = . . . 0011
dq = · · · t 001
p = · · · t 011
q = · · · t 001

dp = t0011
dq = t1001
p = t1011
q = t1001

dp = 00011

dq = 01001

p = 11011

q = 01001

dp = 00011

dq = 11001

p = 11011

q = 11001

X

dp = 10011

dq = 01001

p = 01011

q = 11001

X

dp = 10011

dq = 11001

p = 01011

q = 11001

dp = . . . 0011
dq = . . . 0001
p = . . . 1011
q = . . . 0001

dp = . . . 011
dq = . . . 101
p = . . . 011
q = . . . 101

dp = . . . 111
dq = . . . 001
p = . . . 111
q = . . . 001

dp = . . . 0111
dq = · · · t 101
p = · · · t 111
q = · · · t 101

dp = . . . 0111
dq = . . . 0101
p = . . . 1111
q = . . . 0101

dp = t0111
dq = t0101
p = t1111
q = t1101

dp = 00111

dq = 00101

p = 01111

q = 11101

dp = 00111

dq = 10101

p = 01111

q = 01101

X

dp = 10111

dq = 00101

p = 11111

q = 11101

dp = 23
dq = 5

dp = 10111

dq = 10101

p = 11111

q = 01101

XXX

X

X

X

X

XX

X

Figure 6.11: We give a sample branch and prune tree for recovering dp and dq from known bits, starting
from the least significant bits on the right side of the tree. At each bit location, the value of p up to
bit i is uniquely determined by the guess for dp up to bit i, and the value of q up to bit i is uniquely
determined by the guess for dq up to bit i. The red X marks the branches that are pruned by verifying
the relation pq = N (mod 2i).

154



6.3.1 DSA and ECDSA preliminaries
From the perspective of partial key recovery, DSA and ECDSA are very similar, and we will cover them
together. We will use slightly nonstandard notation to describe each signature scheme to make them as
close as possible, so that we can use the same notation to describe the attacks simultaneously.

6.3.1.1 DSA

The Digital Signature Algorithm [NIS13] (DSA) is an adaptation of the ElGamal Signature Scheme [ElG85]
that reduces the amount of computation required and the resulting signature size by using Schnorr
groups [Sch90].

Parameter Generation. A DSA public key includes several global parameters specifying the group
to work over: a prime p, a subgroup of order n satisfying n | (p − 1), and an integer g that generates a
group of order n (mod p), where n is typically much smaller than p, for example 256 bits for a 2048-bit
p. A single set of group parameters can be shared across many public keys, or individually generated for
a given public key. To generate a long-term private signing key, an implementation starts by choosing
the secret key 0 < α < n and computing y = gα (mod p). The public key is the tuple (y, g, p, n) and the
private key is (α, g, p, n).

Signature Generation. To sign a messagem, implementations apply a collision-resistant hash function
H to m to obtain a hashed message h = H(m). To generate the signature, the implementation generates
an ephemeral secret integer 0 < k < n, and computes the integers r = gk (mod p) (mod n), and
s = k−1(h+ αr) (mod n). The signature is the pair (r, s).

6.3.1.2 ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is an adaptation of DSA to use elliptic curves
instead of Schnorr groups.

Parameter Generation. An ECDSA public key includes global parameters specifying an elliptic curve
E over a finite field together with a generator point g of a subgroup over E of order n. To generate a
long-term private signing key, an implementation starts by choosing a secret integer 0 < α < n, and
computing the elliptic curve point y = αg on E. The public key is the elliptic curve point y together
with the global parameters specifying E, g, and n. The private key is the integer α together with these
global parameters.

Signature Generation. To sign a messagem, implementations apply a collision-resistant hash function
H to m to obtain a hashed message h = H(m). To generate the signature, the implementation generates
an ephemeral secret 0 < k < n. The implementation computes the elliptic curve point kg and sets the
value r to be the x-coordinate of kg. The implementation then computes the integer s = k−1(h + αr)
(mod n). The signature is the pair of integers (r, s).

6.3.1.3 Nonce recovery and (EC)DSA security.

The security of (EC)DSA is extremely dependent on the signature nonce k being securely generated,
uniformly distributed, and unique for every signature. If the nonce for one or more signatures is generated
in a vulnerable manner, then an attacker may be able to efficiently recover the long-term secret signing
key. Because of this property, side-channel attacks against (EC)DSA almost universally target nonce
generation.

Key recovery from signature nonce. For a DSA or ECDSA key, if the nonce k is known for a single
signature, it is simple to compute the long-term private key. Rearranging the expression for s, the secret
key α can be recovered as

α = r−1(ks− h) (mod n). (6.5)

6.3.2 (EC)DSA key recovery from most significant bits of the nonce k

There are two families of techniques for (EC)DSA key recovery from most significant bits of the nonce
k. Both techniques require knowing information about the nonce used in multiple signatures from the
same secret key. We assume that the attacker knows the long-term public signature verification key, and

155



has access to multiple signatures generated using the corresponding secret signing key. The attacker also
needs to know the hash of the messages that the signatures correspond to.

k1

k2

...

Figure 6.12: (EC)DSA key recovery from signatures where most significant bits of the nonces are known.

The first technique is via lattices. This is generally considered more straightforward to implement,
and works well when more nonce bits are known, and information from fewer signatures is available. We
would need to know at least two most significant bits from the nonces of dozens to hundreds of signatures.
We cover this technique below.

The second technique is via Fourier analysis [Ble98, DHMP13] originally due to Bleichenbacher. This
technique can deal with as little as one known most significant bit from signature nonces, but empirically
appears to require an order of magnitude or more signatures than the lattice approach, and as many as
232–235 for record computations [ANT+20]. We leave a more detailed discussion of this technique for
future work. Nice descriptions of the algorithm can be found in [DHMP13, TTA18].

6.3.2.1 Lattice attacks

The main idea behind lattice attacks for (EC)DSA key recovery is to formulate the (EC)DSA key recovery
problem as an instance of the Hidden Number Problem and then compute the shortest vector of a specially
constructed lattice to reveal the solution.

The Hidden Number Problem The Hidden Number Problem was introduced by Boneh and Venkate-
san [BV96] to show that the most significant bits of a Diffie-Hellman shared secret are hardcore, meaning
they are as hard to compute as computing the secret key itself. Nguyen and Shparlinski showed how to
use this approach to break DSA and ECDSA from information about the nonces [NS02, NS03]. Various
extensions of the technique can deal with different numbers of bits known per signature [BvSY14] or
errors [DDME+18].

Below we give a simplified example that shows how to recover the key from a small number of
signatures when many of the most significant bits of the nonce are zero, and then we will show how
to extend the attack to more signatures with fewer bits known from each nonce, and cover the case of
arbitrary bits known from the nonce.

Problem setup. Let p = 0xffffffffffffd21f be a 64-bit prime, and let E : y2 = x3 +3 be an elliptic
curve over Fp. Let g = (1, 2) be our generator point on E, which has order n = 0xfffffffefa23f437.
We have two ECDSA signatures

(r1, s1) =(6393e79fbfb40c9c, 621ee64e65d1e938)

on message hash h1 = ae0f1d8cd0fd6dd1,

and

(r2, s2) =(3ea8720afa6d03c2, 16fc6aa65bf241ea)

on message hash h2 = 8927e246fe4f3941.

These signatures both use 32-bit nonces k; that is, we know that their 32 most significant bits are 0.

156



Cast the problem as a system of equations. Our signatures above satisfy the equivalencies

s1 ≡ k−1
1 (h1 + αr1) (mod n),

s2 ≡ k−1
2 (h2 + αr2) (mod n).

The values k1, k2, and α are unknown; the other values are known. We can eliminate the variable α and
rearrange terms as follows:

k1 − s−1
1 s2r1r

−1
2 k2 + s−1

1 r1h2r
−1
2 − s−1

1 h1 ≡ 0 (mod n).

Let t = −s−1
1 s2r1r

−1
2 and u = s−1

1 r1h2r
−1
2 − s−1

1 h1. We can then simplify the above as

k1 + tk2 + u ≡ 0 (mod n). (6.6)

We wish to solve for k1 and k2, and we know that they are both small. Let |k1|, |k2| < K. For our
example, we have K = 232.

Construct a lattice. We construct the following lattice basis

B =

n 0 0
t 1 0
u 0 K

 .

The vector v = (k1, k2,K) is in this lattice by construction, and we expect it to be particularly short.
Calling the LLL algorithm (or BKZ algorithm) on the basis B results in a basis that contains this short
vector

v = (−0x270feca3, 0x4dbd2db0, 0x100000000)

as the third vector in the reduced basis. We can verify that the value r1 in our example matches the
x-coordinate of k1g, and we can use Equation 6.5 to compute the private key α.

Question 86. Why does this work?

In our example, we have constructed a lattice that is guaranteed to contain our target vector. In
order for this method to work, we hope that it is the shortest vector, or close to the shortest vector in
the lattice, and we solve the unique shortest vector problem in the lattice in order to find it.

The vector v = (k1, k2,K) has length ||v||2 ≤
√

3K by construction. Our lattice has determinant
detB = nK. Ignoring constants for the moment, if our lattice were truly random, we would expect
the shortest vector to have length ≈ detB1/ dimB . Thus if ||v||2 < detB1/ dimB , we expect it to be the
shortest vector in the lattice, and to be found by a sufficiently good approximation to the shortest vector
problem. For our example, we expect this to be satisfied when K < (nK)1/3, or when K <

√
n.

The way we have presented this method may remind the reader of the flavor of the methods in
Section 6.2.2.1. The specific lattice construction used here is a sort of “dual” to the constructions from
Section 6.2.2.1, in that the target vector is the desired solution to our system of equations. However, in
contrast to Section 6.2.2.1, we are not guaranteed to find the solution we desire once we find a sufficiently
short vector: this method can fail with probability that decreases the shorter our target vector α is
compared to the expected shortest vector length.

Scaling to many signatures to decrease the number of bits known. To decrease the number of
bits required from each signature, we can incorporate more signatures into the lattice. If we have access
to many signatures (r1, s1), . . . , (rm, sm) on message hashes h1, . . . , hm, we use the same method above
to write down equivalencies si ≡ k−1

i (hi+αri) (mod n), then as above we rearrange terms and eliminate
the variable α to obtain

k1 + t1km + u1 ≡ 0 (mod n)

k2 + t2km + u2 ≡ 0 (mod n)

...
km−1 + tm−1km + um−1 ≡ 0 (mod n)

(6.7)

157



We then construct the lattice

B =



n
n

. . .
n

t1 t2 . . . tm 1
u1 u2 . . . um 0 K


.

In order to solve SVP, we must run an algorithm like BKZ with block size dimL(B) = m + 2.
Using BKZ to look for the shortest vector can be done relatively efficiently up to dimension around 100
currently; beyond that it becomes increasingly expensive. In practice, one can often achieve a faster
running time for fixed parameters by using more samples to construct a larger dimension lattice, and
applying BKZ with a smaller block size to find the target vector. This method can recover a secret key
from knowledge of the 4 most significant bits of nonces from 256-bit ECDSA signatures using about 70
samples, and 3 most significant bits using around 95 samples. For fewer bits known, either the Fourier
analysis technique or a more powerful application of these lattice techniques is required, along with
significantly more computational power.

Known nonzero most significant bits. If the most significant bits of the ki are nonzero and known,
we can write ki = ai + bi, where the ai are known, and the bi are small, so satisfy some bound |bi| < K.
Then substituting into Equation 6.6, we obtain

(ai + bi) + ti(am + bm) + ui ≡ 0 (mod n),

bi + tibm + ui + ai + tiam ≡ 0 (mod n).

Thus we can let u′i = ui + ai + tibm, and use the same lattice construction as above, with u′i substituted
for ui.

Nonce rebalancing. The signature nonces ki take values in the range 0 < ki < n, but the lattice
construction bounds the absolute value |ki|. Thus if we know that 0 < ki < K for some bound K, we can
achieve a tighter bound by renormalizing the signatures. Let k′i = ki −K/2, so that |k′i| < K/2. Then
we can write Equations 6.7 as

ki + tikm + ui ≡ 0 (mod n),

(k′i +K/2 + ti(k
′
m +K/2) + ui ≡ 0 (mod n),

k′i + tik
′
m + (ti + 1)K/2 + ui ≡ 0 (mod n).

Thus we have an equivalent problem with t′i = ti, u′i = (ti + 1)K/2 + ui, and K ′ = K/2, and can solve as
before. This optimization can make a significant difference in practice by reducing the number of required
samples as we will see for example in Chapter 7.

6.3.2.2 (EC)DSA key recovery from least significant bits of the nonce k

The attack described above works just as well for known least significant bits of the (EC)DSA nonce.

k1

k2

2`bi ai

...

Figure 6.13: (EC)DSA key recovery from signatures where least significant bits of the nonces are known.

158



Problem setup. We input a collection (EC)DSA signatures (ri, si) on message hashes hi. For each
signature, we know the least significant bits, so the signature nonces ki satisfy

ki = ai + 2`bi,

for known ai, and bi unknown but satisfying |bi| < B. Substituting these into Equations 6.7, we get

ai + 2`bi + ti(am + 2`bm) + ui ≡ 0 (mod n),

2`bi + 2`tibm + ai + tiam + ui ≡ 0 (mod n),

bi + tibm + 2−`(ai + tiam + ui) ≡ 0 (mod n).

We have an equivalent instance of the problem with t′i = ti, u′i = 2−`(ai + tiam + ui), and B′ = B, and
solve as above.

6.3.2.3 (EC)DSA key recovery from middle bits of the nonce k

k1

k2

2`ci biai

...

Figure 6.14: (EC)DSA key recovery from signatures where middle bits of the nonces are known.

Recovering an ECDSA key from middle bits of the nonce k is slightly more complex than the methods
discussed above, because we have two unknown “chunks” of the nonce to recover per signature. Fortu-
nately, we can deal with these by extending the methods to multiple variables per signature. The method
we will use here is similar to the multivariate extension in Section 6.2.2.4, but this case is simpler.

Problem setup. We will use the same elliptic curve group parameters as above. Consider the 64-bit
prime p = 0xffffffffffffd21f, and let E : y2 = x3 + 3 be an elliptic curve over Fp. Let g = (1, 2) be
our generator point on E, which has order n = 0xfffffffefa23f437. We have two ECDSA signatures

(r1, s1) =(1a4adeb76b4a90e0, eba129bb2f97f7cd)

on message hash h1 = 608932fcfaa7785d,

and

(r2, s2) =(c4e5bec792193b51, 0202d6eecb712ae3)

on message hash h2 = 4de972930ab4a534.

We know some middle bits of the corresponding nonces. Let

a1 = 0x50e2fd5d8000

be the middle 34 bits of the signature nonce k1 used for the first signature above. The first and last 15
bits are unknown. Let

a2 = 0x172930ab48000

be the middle 34 bits of the signature nonce k2 used for the second signature above.

159



Cast the problem as a system of equations. As above, our two signature nonces k1 and k2 satisfy
the relation

k1 + tk2 + u ≡ 0 (mod n), (6.8)

where t = −s−1
1 s2r1r

−1
2 and u = s−1

1 r1h2r
−1
2 − s

−1
1 h1. Since we know the middle bits of k1 and k2 are a1

and a2 respectively, we can write

k1 = a1 + b1 + 2`c1 and k2 = a2 + b2 + 2`c2,

where b1, c1, b2, and c2 are unknown but small, less than some bound K. In our example, we have |b1|,
|b2|, |c1|, |c2| ≤ 215 and ` = 64− 15 = 49. Substituting and rearranging into Equation 6.8, we have

b1 + 2`c1 + tb2 + 2`tc2 + a1 + ta2 + u ≡ 0 (mod n).

Let u′ = a1 + ta2 + u. We wish to find the small solution x1 = b1, y1 = c1, x2 = b2, y2 = c2 to the linear
equation

f(x1, y2, x2, y2) = x1 + 2`y1 + tx2 + 2`ty2 + u′ ≡ 0 (mod n). (6.9)

Construct a lattice. We construct the following lattice basis

B =


K K · 249 Kt Kt · 249 u′

Kn
Kn

Kn
n

 .

If we call the LLL or BKZ on B, we obtain a basis that contains the vector

v = (0x6589e5fb1823K,−0x42b0986d3e11K, 0x8d3b91566f89K,
0x41be198fb49eK,−0x1dd626d2645d8f7e).

This corresponds to the linear equation

0x6589e5fb1823x1 − 0x42b0986d3e11y1 + 0x8d3b91566f89x2

+ 0x41be198fb49ey2 − 0x1dd626d2645d8f7e = 0.

We can do the same for the next three short vectors in the basis, and obtain four linear polynomials in
our four unknowns. Solving the system, we obtain the solutions

x1 = 0x241c, y1 = 0x39a2, x2 = 0x2534, y2 = 0x26f4.

Question 87. Why does this work?

The row vectors of the lattice correspond to the weighted coefficient vectors of the linear polynomial f in
Equation 6.9, nx1, ny1, nx2, and ny2. Each of these linear polynomials vanishes by construction modulo
n when evaluated at the desired solution x1 = b1, y1 = c1, x2 = b2, y2 = c2, and thus so does any linear
polynomial corresponding to a vector in this lattice. If we can find a lattice vector whose `1 norm is less
than n, then the corresponding linear equation vanishes over the integers when evaluated at the desired
solution. In this case, the factorization of n is known, hence we could wonder why it is required to solve
over the integers. But HNP is an underdetermined system over n where we have more variables than
equations and thus solving mod n would potentially lead to a possibly much larger solution than the one
expected. Since we have four unknowns, if we can find four sufficiently short lattice vectors corresponding
to four linearly independent equations, we can solve for our desired unknowns.

The determinant of our example lattice is detL(B) = K4n4, and the lattice has dimension 5. Thus, ig-
noring approximation factors and constants, we expect to find a vector of length detB1/ dimB = (Kn)(4/5).
This is less than n when K4 < n; in our example this is satisfied because we have chosen a 15-bit K and
a 64-bit n.

The determinant bounds guarantee that we will find one short lattice vector, but do not guarantee
that we will find four short lattice vectors. For that, we rely on the heuristic assumption that the reduced
vectors of a random lattice are close to the same length.

160



6.3.2.4 (EC)DSA key recovery from many chunks of nonce bits

The above technique can be extended to an arbitrary number of variables.

k1

k2

...

(EC)DSA key recovery from signatures where multiple chunks of the nonces are known.

The extension is called the Extended Hidden Number problem [HR07] and can be used to solve for
ECDSA keys when many chunks of signature nonces are known. Each unknown “chunk” of nonce in each
signature introduces a new variable, so the resulting lattice will have dimension one larger than the total
number of unknowns; if there are m signatures and h unknown chunks of nonce per signature, the lattice
will have dimension mh+ 1. We expect this technique to find the solution when the parameters are such
that the system of equations has a unique solution. If the size of each chunk is K, heuristically this will
happen when Kmh < nm−1. This technique has been used in practice in [FWC16] and further explored
in [DPP20]. We will discuss the Extended Hidden Number Problem in more details in Chapter 8.

6.4 Key recovery method for the Diffie-Hellman Key Exchange
We now move on to the last protocol we consider in this chapter, the Diffie-Hellman key exchange protocol.

6.4.1 Finite field and elliptic curve Diffie-Hellman preliminaries
The Diffie-Hellman (DH) key exchange protocol [DH76] allows two parties to create a common secret in
a secure manner. We summarize the protocol in the context of finite fields and elliptic curves.

Finite field Diffie-Hellman. Finite-field Diffie-Hellman parameters are specified by a prime p and a
group generator g. Common implementation choices are p a safe prime, i.e., q = (p − 1)/2 is prime, in
which case g is often equal to 2, 3 or 4, or p is chosen such that p − 1 has a 160, 224, or 256-bit prime
factor q and g generates a subgroup of F∗p of order q. Key exchange is performed as follows:

1. Alice chooses a random private key a, where 1 ≤ a < q and computes a public key A = ga (mod p).

2. Bob chooses a random private key b, where 1 ≤ b < q and computes a public key B = gb (mod p).

3. Alice and Bob exchange the public keys.

4. Alice computes sA = Ba (mod p).

5. Bob computes sB = Ab (mod p).

Because Ba (mod p) = (gb)a (mod p) = (ga)b (mod p) = Ab (mod p), we have sA = sB . The latter is
the secret that now Alice and Bob share.

Elliptic Curve Diffie-Hellman The Elliptic Curve Diffie-Hellman (ECDH) protocol is the elliptic
curve counterpart of the Diffie-Hellman key exchange protocol. In ECDH, Alice and Bob agree on an
elliptic curve E over a finite field and a generator G of order q. The protocol proceeds as follows:

1. Alice chooses a random private integer a, where 1 ≤ a < q and computes a public key A = aG.

2. Bob chooses a random private integer b, where 1 ≤ b < q and computes a public key B = bG.

3. Alice and Bob exchange the public keys.

4. Alice computes sA = aB.

161



5. Bob computes sB = bA.

The shared secret is sA = aB = a(bG) = b(aG) = bA = sB .

6.4.2 Most significant bits of finite field Diffie-Hellman shared secret
The Hidden Number Problem approach we used in the previous section to recover ECDSA or DSA keys
from information about the nonces can also be used to recover a Diffie-Hellman shared secret from most
significant bits.

Bc

ri ki
s

sBc

Recovering Diffie-Hellman shared secret from most significant bits of s.

Problem setup. Let p = 0xffffffffffffffffffffffffffffc3a7 be a 128-bit prime used for finite
field Diffie-Hellman, and let g = 2 be a generator of the multiplicative group modulo p. Let s the
Diffie-Hellman shared secret between public keys

A = ga (mod p) = 0x3526bb85185259cd42b61e5532fe60e0

and
B = gb (mod p) = 0x564df0b92ea00ea314eb5a246b01ac9c.

We have learned the value of the first 65 bits of s. Let

r1 = 0x3330422f6047011b8000000000000000,

so we know that s = r1 + k1 where k1 < K = 263. Let c = 0x56e112dac14f4a4cc02951414aa43a38. We
have also learned the most significant 65 bits of the Diffie-Hellman shared secret between AC = ga+c =
gagc (mod p) and B. Let

r2 = 0x80097373878e37d20000000000000000.

We know that g(a+c)b = gabgbc = sBc (mod p). Let t = Bc so st = r2 +k2 (mod p) where k2 < K = 263.

Cast the problem as a system of equations. We have two relations

s = r1 + k1 (mod p), st = r2 + k2 (mod p),

where s, k1, and k2 are small and unknown, and r1, r2, and t are known. We can eliminate the variable
s to obtain the linear equation

k1 − t−1k2 + r1 − t−1r2 ≡ 0 (mod p).

We now have a linear equation in the same form as the Hidden Number Problem we solved in the previous
section.

Construct a lattice. We construct the lattice basis

B =

 p
t−1 1

a1 − t−1a2 K

 .

If we call the LLL algorithm on the basis B, we obtain a basis that contains the vector

(−0x2ddb23aa673107bd,−0x216afa75f66a39d5, 0x10000000000000000).

162



This corresponds to our desired solution (k1, k2,K), although if the Diffie-Hellman assumption is true,
meaning gab (mod p) looks like a random element of F∗p, we cannot verify its correctness.

This method is due to Boneh and Venkatesan [BV96], and was the original motivation for their
formulation of the Hidden Number Problem. The Raccoon attack recently demonstrated an attack
scenario using this technique in the context of TLS [MBA+20].

This method can be adapted to multiple samples with the same number of bits required as the
attacks on ECDSA. Knowing the most significant bits of s is not necessary either; we only need the most
significant bits of known multiples ti of s.

6.4.3 Discrete log from contiguous bits of Diffie-Hellman secret exponents
This section addresses the problem of Diffie-Hellman key recovery when the known partial information
is part of one or the other of the secret exponents. The technique we apply in this section is Pollard’s
kangaroo (also known as lambda) algorithm [Pol78] introduced in Chapter 1. Unlike the techniques of
the previous sections, which are generally efficient when the attacker’s knowledge of the key is above a
certain threshold, and either inefficient or infeasible when the attacker’s knowledge of the key is below
this threshold, this algorithm runs in exponential time, square root of the size of the interval. Thus it
provides a significant benefit over brute force, but in practice is likely limited to 80 bits or fewer of key
recovery unless you have access to an unusually large amount of computational resources.

Recall that the Pollard kangaroo algorithm is a generic discrete logarithm algorithm that is designed
to compute discrete logarithms when the discrete logarithm lies in a small known interval. It applies to
both elliptic curve and finite field discrete logarithms. We will use finite field discrete logarithms for our
examples, but the algorithm is the same in the elliptic curve context.

6.4.3.1 Known most significant bits of the Diffie-Hellman secret exponent

Problem Setup. Using the same notation for finite fields as in Section 6.4.1, let A be a Diffie-Hellman
public key, p be a prime modulus, and g a generator of a multiplicative group of order q modulo p.
These values are all public, and thus we assume that they are known. Imagine that we have obtained
a consecutive fraction of the most significant bits of the secret exponent a, and we wish to recover the
unknown bits of a to reconstruct the secret.

a

2`m′ r

Figure 6.15: Recovering Diffie-Hellman shared secret with most significant bits of secret exponent.

In other words, let a = m+ r, where m = 2`m′ for some known integers m′ and `, and 0 ≤ r < 2` is
unknown. Let w be the width of the interval that r is contained in: here we have w = 2`.

For our concrete example, let p = 0xfef3 be a 16-bit prime, and let g = 3 be a multiplicative generator
of the group of order q = (p−1)/2 = 0x7f79 modulo p. We know a Diffie-Hellman public key A = 0xa163

and we are given the most significant bits of the secret exponent a but the 8 least significant bits of a are
unknown, corresponding to m = 0x1400, ` = 8, and r < 28.

Take some pseudorandom walks. We define a deterministic pseudorandom walk along the following
values s0, s1, . . . , si, . . . in our multiplicative group modulo p (and the corresponding exponents s0 = gxo

(mod p), . . . , when known) by choosing a set of random step lengths for the exponents in [0,
√
w]. For

our example, we pseudorandomly generated the lengths (1, 3, 7, 10).

si+1 →


sig (mod p) if si ≡ 0 (mod 4)

sig
3 (mod p) if si ≡ 1 (mod 4)

sig
7 (mod p) if si ≡ 2 (mod 4)

sig
10 (mod p) if si ≡ 3 (mod 4)

This is a small sample pseudorandom walk generated to run our small example computation. Each step in
the pseudorandom walk is determined by the representation of the previous value as an integer 0 ≤ si < p.

163



We run two random walks. The first random walk, which is called “the tame kangaroo”, starts in the
middle of the interval of exponents to be searched, at s0 = gm+bw2 c (mod p). In our example, we have
m = 0x1400 and w = 28 = 256, so the tame kangaroo begins at s0 = g0x1480 (mod p) = 0x9581. We
take

√
w steps along this deterministic pseudorandom path, and store the values si together with the

exponent xi that is computed at each step so that gxi ≡ si (mod p).
The second random walk is called the “wild kangaroo”. It begins at the target s′0 = A = 0xa163 and

follows the same rules as above. We do not know the secret exponent a, but at every step of the walk,
we know that s′i = Agx

′
i (mod p) = ga+x′i (mod p). We take at most

√
w steps along this deterministic

pseudorandom path.
If at some point the wild kangaroo’s path intersects the tame kangaroo’s path, then we are done and

can compute the result.

m = 0x1400

m+ w = 0x1500

a

0x1480
0x1483 0x148a 0x1494

0x1497

a+0xa
a+0xd a+0x17 a+0x21 a+0x28

a+0x2b
a+0x2e
a+0x2f

a+0x36

Compute the discrete log. We know that si = s′j for si on the tame kangaroo’s path and s′j on the
wild kangaroo’s path. Thus we have

si = s′j (mod p),

gxi = ga+x′j (mod p),

xi = a+ x′j (mod q),

xi − x′j = a (mod q).

In our example, the kangaroos’ paths intersected at g0x1497 and ga+0x36. We can thus compute a = 0x1461

and verify that g0x1461 ≡ 0xa163 (mod p).

Pollard gave the original version of this algorithm in [Pol78]. Teske gives an alternative random
walk in [Tes00] that should provide an advantage in theory, but in practice, it seems that no noticeable
advantage is gained from it.

We expect this algorithm to reach a collision in O(
√
w) steps; this algorithm thus takes O(

√
w) time

to compute a discrete log in an interval of width w. Thus in principle, the armchair cryptanalyst should
be able to compute discrete logarithms within intervals of 64 to 80 bits, and those with more resources
should be able to go slightly higher than this.

In order to scale to these larger bit sizes, several changes are necessary. First, one typically uses
a random walk with many more subdivisions: 32 might be a typical value. Second, van Oorschot and
Wiener [OW99] show how to parallelize the kangaroo algorithm using the method of distinguished points
as already mentioned in Chapter 2. The idea behind this method is that storing the entire tame kangaroo
walk will require too much memory. Instead, one stores a subset of values that satisfy some distinguishing
property, such as starting with a certain number of zeros. Then the algorithm launches many wild and
tame kangaroo walks, storing distinguished points in a central database. The algorithm is finished when
a wild and a tame kangaroo land on the same distinguished point.

Elliptic curves. This algorithm applies equally well to elliptic curve discrete logarithm. One can gain
a
√

2 improvement in the complexity of the algorithm as a by-product of the efficiency of inversion on
elliptic curves. Since the points P and −P share the same x-coordinate, one can then do a pseudorandom
walk on equivalence classes for the relation P ∼ ±P .

164



6.4.3.2 Unknown most significant bits of the Diffie-Hellman secret exponent

a

2`r m

Figure 6.16: Recovering Diffie-Hellman shared secret with least significant bits

It is straightforward to extend the kangaroo method to solve for unknown most significant bits of the
exponent. As before, we have a known A = ga (mod p) for unknown a that we wish to solve for. In
the case of unknown most significant bits, we know an m such that a = m + 2`r for some unknown r
satisfying 0 ≤ r < w. The offset ` is known. Then we can reduce to the previous problem by running the
kangaroo algorithm on the value A′ = g2−`A = g2−`+m+2`r (mod p).

Open Question 7. Is it possible to recover the Diffie-Hellman secret key with multiple chunks of
unknown bits?

a

a

m2`r r′

Figure 6.17: Recovering Diffie-Hellman shared secret with multiple chunks of unknown bits.

The case of recovering a Diffie-Hellman secret key in practice with multiple chunks of unknown bits is
still an open problem. In theory, finding the secret key in this particular case can be done using a multi-
dimensional variant of the discrete logarithm problem. The latter generalizes the discrete logarithm
problem in an interval to the case of multiple intervals, see [Rup10, Chapter 6] for further details.
In [Rup10], Ruprai analyzes the multi-dimensional discrete logarithm problem for small dimensions.
This approach appears to run into boundary issues for multi-dimensional pseudorandom walks when the
dimension is greater than five, suggesting that this approach may not extend to the case of recovering
many unknown chunks of a Diffie-Hellman exponent.

6.5 Conclusion
This chapter surveyed key recovery methods with partial information for popular public key cryptographic
algorithms. We focused in particular on the most widely-deployed asymmetric primitives: RSA, (EC)DSA
and Diffie-Hellman. The motivation for these algorithms arises from a variety of side-channel attacks.

While the existence of key recovery algorithms for certain cases may determine whether a particular
vulnerability is exploitable or not, we emphasize that these thresholds for an efficiently exploitable key
recovery attack should not be used to guide countermeasures. Instead, implementations should strive
to have fully constant-time operations for all cryptographic operations to protect against side-channel
attacks.

165



166



Chapter 7

Cachequote: attacking EPID signature
protocol in SGX with HNP

Intel Software Guard Extensions (SGX) allows users to perform secure computation on platforms that
run untrusted software. To validate that the computation is correctly initialized and that it executes
on trusted hardware, SGX supports attestation providers that can vouch for the user’s computation.
Communication with these attestation providers is based on the Extended Privacy ID (EPID) protocol,
which not only validates the computation but is also designed to maintain the user’s privacy. In particular,
EPID is designed to ensure that the attestation provider is unable to identify the host on which the
computation executes.

In this chapter we investigate the security of the Intel implementation of the EPID protocol. We
identify an implementation weakness that leaks information via a cache side channel. We show that a
malicious attestation provider can use the leaked information to break the unlinkability guarantees of
EPID. We analyze the leaked information using a lattice-based approach for solving the Hidden Number
Problem, which we adapt to the zero-knowledge proof in the EPID scheme, extending prior attacks on
signature schemes.

This chapter is joint work with Fergus Dall, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger,
Ahmad Moghimi, and Yuval Yarom and was published in the proceedings of the CHES 2018
conference [DDME+18]. We notified Intel of our results in January 2018, and the vulnerability has been
assigned CVE-2018-3691. Our contribution concerns the key recovery part in Section 7.5.

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.2 Targeted Software and Hardware . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2.1 Using a cache attack: Prime+Probe . . . . . . . . . . . . . . . . . . . . . 169
7.2.2 Intel SGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.3 Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.4 Enhanced Privacy ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 SGX EPID Provisioning and Attestation . . . . . . . . . . . . . . . . . 173
7.3.1 Provisioning and Quoting Enclave Implementations . . . . . . . . . . . . . 173
7.3.2 Scalar Multiplication in the Quoting Enclave . . . . . . . . . . . . . . . . 173

7.4 Short Scalar Leakage via High Resolution Side Channels . . . . . . . . 174
7.4.1 Controlled Prime+Probe Attack . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.2 Loop Counting Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 A Lattice Attack on EPID . . . . . . . . . . . . . . . . . . . . . . . . . . 176

167



7.5.1 Conversion to a Hidden Number Problem . . . . . . . . . . . . . . . . . . 177

7.5.2 Solving the Hidden Number Problem . . . . . . . . . . . . . . . . . . . . . 177

7.5.3 Performance Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.5.4 Recovering f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.1 Introduction
Mainstream processors have recently employed Trusted Execution Environments that allow running sen-
sitive computation on potentially-compromised computers owned by untrusted third parties. The most
prominent example is Intel Software Guard Extensions (SGX), which is a set of extensions to the Intel
x86 architecture that aims to reduce the level of trust required of the platform owner at runtime. In
particular, SGX is designed to enable secure computation under the assumption that the whole soft-
ware stack, including the operating system (OS), is malicious. In order to achieve such strong security
guarantees, SGX introduces runtime environments known as enclaves that are isolated from the software
running on the computer. To ensure isolation, SGX strictly controls the entry to and exit from enclaves
and limits inadvertent state transfer from enclaves to the outer untrusted software.

In order to allow the user to distinguish between legitimate and properly configured hardware and
potentially corrupted software emulators, SGX supports a remote attestation protocol that allows users
to verify the legitimacy of the enclave before sending sensitive data to the enclave. The remote attestation
protocol can verify if the enclave is running on a supported, and hence presumably trusted, processor
and that the enclave has been initialized correctly. Remote attestation has been implemented through
a combination of two architectural enclaves, the provisioning enclave and the quoting enclave, which
together implement the Enhanced Privacy ID (EPID) protocol of [BL11]. EPID generates signatures
that can be verified by a trusted attestation server. While the attestation server is trusted to verify the
signatures, it is not trusted to maintain users’ privacy. Consequently, SGX uses blinded group signatures
which are unlinkable, allowing the attestation server to verify the signature’s validity without knowing
the signer’s identity.

Whereas side-channel attacks have been extensively used to attack cryptographic primitives of all kind
(see Chapter 6), not much is known about the effects of side-channel attacks on long term privacy of SGX
enclaves. In particular, while microarchitectural side-channel attacks can be used to extract information
from third-party software running within SGX enclaves [XLCZ17], the effects of side-channel attacks on
the enclave’s own attestation mechanism have not been properly understood. Thus, in this chapter we
investigate the following questions.

Question 88. How do side-channel attacks affect SGX’s EPID attestation protocol? More specifically,
can side-channel attacks be used to violate EPID’s forward or backward privacy?

7.1.1 Our Contribution
A Side-Channel Attack on Intel’s EPID Protocol In this chapter, we answer the above question
in the affirmative, by presenting the first cache attack on Intel’s EPID protocol, as implemented inside
SGX’s quoting enclave. Our attack is able to recover part of the enclave’s long term secret key, thereby
allowing a malicious attestation server operator to break the unlinkability guarantees of SGX’s remote
attestation protocol.

Lattice Attacks on Zero Knowledge Proofs As we show in Section 7.3, Intel’s implementation of
the EPID protocol partially leaks the length of the randomness used for one of the zero-knowledge proofs
used during EPID attestation. In order to recover part of the target’s long term secret key, we use this
information to build an instance of the Hidden Number Problem (HNP) [BV96], which we solve using
lattices. While such an approach was previously used [NS02, NS03, BT11, vSY15, GPP+16] for the case
of nonce leakage from digital signatures, in this chapter we extend this approach from digital signatures
to zero-knowledge protocols. To the best of our knowledge, this is the first application of side channels
and lattice techniques beyond signatures, to the more general case of zero-knowledge protocols.

168



Attack Evaluation and Error Handling We evaluate the efficiency of our lattice attack in this
setting, including measuring the effects of different optimizations, the tradeoffs involved in incorporating
samples of different sizes into key recovery, and the robustness of the lattice construction against the
types of measurement errors we encountered in our attack. In particular, we give experimental evidence
that the lattice attack can still succeed even when a small number of erroneous traces are included, for
the type of error we observed in our measurements, where the side-channel observation undercounted the
true nonce length by several bits.

7.1.2 Targeted Software and Hardware
Attack Scenario In line with previous attacks on SGX [LSG+17, MIE17], we assume that the attacker
has root access to a Linux machine. The attacker can control the OS resources, including assignment
of processes to cores, interleaved execution of SGX enclave and a cache monitoring process, as well as
configuring the processor power and frequency scaling. While powerful, these are valid assumptions for
attacking SGX enclaves as SGX excludes the OS from its trusted computing base and assumes that the
OS is malicious.

As a motivating example for the attack scenario, we look at Signal’s Private Contact Discovery
Service2. This service allows clients to probe their contact list without revealing the probe results to
any of the service operators. To protect the service, Signal implements it in an SGX enclave, and
employs secret, unlinkable provisioning which hides the identity of the servers providing the service from
the attestation provider. However, a malicious attestation provider can use our side-channel attack in
conjunction with the information it gets as part of the EPID protocol to find the host’s private key. This
private key can then be used to link all attestation requests for services running on the host, exposing
the service to the attestation provider.

To the best of our knowledge, at the moment Intel is the only attestation provider and thus our attack
currently only allows Intel to break EPID’s unlinkability property. However, in principle, SGX’s design
also allows for (less trusted) third-party attestation providers. Unless mitigated, our attack would apply
to these parties as well.

Hardware In principle, our attack is applicable to any CPU that supports Intel’s SGX and EPID
attestation. We empirically demonstrate our attack on a Dell Inspiron 5559 laptop with an Intel Skylake
i7-6500U CPU featuring two hyper-threaded physical cores. Each physical core has 32 kB of L1D cache,
used as our side channel. The L1 cache is 8-way associative and consists of 64 sets.

Software Our target laptop is running Ubuntu 16.04 and SGX Software Development Kit (SDK)
version 1.7. The targeted quoting enclave and EPID library matches between the Intel prebuilt binaries
and the SGX SDK source code3.

Because the EPID signatures in the quoting enclave implementation are encrypted to a hard-coded
RSA public key before being transmitted to the remote attestation provider, as described in Section 7.3,
we modified the quoting enclave to encrypt to our own public key so that we could decrypt the messages.
This extra encryption in the implementation is not part of the EPID attestation protocol. Our threat
model for this scenario is that the remote attestation provider is the attacker.

We implemented the side-channel attack using CacheZoom4 [MIE17]. Our signal analysis heuristics
are developed using Matlab version R2017a and its signal analysis toolbox.

7.2 Preliminaries
7.2.1 Using a cache attack: Prime+Probe
The cache hierarchy of modern Intel processors consists of three levels, with each level being larger and
slower than the levels above it. The L1 cache at the top of the hierarchy is split into two caches: the L1
Data (L1D) cache is used for the data the program accesses; the L1 Instruction (L1I) cache stores the
instructions that the programs execute. The L1D cache is virtually indexed, i.e., the processor uses the
virtual address to find the cache set that stores the data. Consequently, by targeting the L1D cache in

2https://github.com/whispersystems/ContactDiscoveryService/
3SGX SDK is accessible at https://github.com/01org/linux-sgx
4CacheZoom source code is accessible at https://github.com/vernamlab/CacheZoom

169



our attack, we avoid the need to map the cache as was required for past works that target the next level
and larger caches [LYG+15, IGI+16, YGL+15]. The Prime+Probe methodology, explained in Chapter 6,
scales well to the SGX threat model where an adversary, e.g. a malicious OS, shares the same cache while
being unable to access enclave memory pages.

7.2.2 Intel SGX
Intel Software Guard Extensions (SGX) are extensions of the Intel instruction set that provide trusted
execution environments (TEEs) in Intel processors. The extensions, available since the Skylake processor
generation [AMG+15], introduce secure execution environments called enclaves, that only include the
processor hardware in their trusted computing base (TCB). Enclaves are protected through a combination
of hardware measures that encrypt the enclave memory and strictly control the processor state at entry
to and exit from the enclave.

Because SGX excludes the OS from its trusted computing base, the OS is assumed to be malicious.
This, combined with SGX’s lack of protection against side-channel attacks [AMG+15, CD16], have paved
the way for stronger attack models that include adversarial control of the OS. Several side channels
exploiting these adversarial powers have been demonstrated, including attacks on the page tables [XCP15,
VBWK+17], branch target buffers (BTB) [LSG+17], caches [SWG+17, MIE17, BMD+17] and memory
false dependency [MES18].

One notable technique that has been used across multiple attacks [LSG+17, MIE17] is exploiting the
operating system’s power to interrupt the enclave frequently. The technique allows the adversary to get
information at a high temporal resolution and monitor memory accesses of almost every single instruction
performed by the victim enclave.

Mechanisms to protect SGX enclaves against side-channel attacks have also been proposed: page
table attacks can be mitigated through compiler-level page table masking [SCNS16] or through minor
modifications to the mechanism of page table entries (PTE) within the SGX hardware [SP17]. Other
compiler-level protections have been proposed based on software diversity and binary code retrofitting to
mitigate cache attacks [WWB+17, BCD+17, BCD+19]. Déjà Vu aims to detect excessive interruption
introduced by OS adversaries [CZRZ17]. However, none of these mitigations have been adopted by the
Intel provisioning enclave and quoting enclave. Further, the soundness and efficiency of these ad-hoc
solutions have not been verified in practice.

Using an untrusted OS implies that users of the enclave need some mechanism to ensure that they
communicate with a legitimate enclave that has been initialized correctly. To achieve this, Intel provides
support for remote attestation. Remote attestation relies on a combination of secret keys stored within
the processors and a cryptographic protocol which allows users to verify that they communicate with an
enclave (as opposed to communicating with fake software set up by a malicious OS), that the enclave is
running on a supported, and hence presumed trusted, processor and that the enclave has been initialized
correctly. The protocol used for remote attestation, the Enhanced Privacy ID (EPID), is described in
7.2.4.

7.2.3 Bilinear Maps
Following the notation of [BBS04], let G1 and G2 be prime order multiplicative cyclic groups with
generators g1 and g2 (respectively). For convenience, we recall here the definition of a pairing introduced
in Definition 3 in the introduction. We say that a mapping e : G1 × G2 → GT is an admissible bilinear
map if the following properties hold.

1. Bilinearity For all (u, v) ∈ G1 ×G2 and for all a, b ∈ Z, it holds that e(ua, vb) = e(u, v)ab.

2. Non-Degeneracy e(g1, g2) is a generator of GT and e(g1, g2) 6= 1.

3. Efficiently Computable It is possible to efficiently compute e(u, v) for all (u, v) ∈ G1 ×G2.

As we focus on the EPID construction of [BL11], we now review two parameter choices for G1,G2,GT .
Indeed, in order to achieve 80-bit security level, [BL11] initialize G1,G2,GT with a family of 170-bit non-
supersingular elliptic curves defined by Miyaji et al. [MN01]. Next, for 128-bit security, [BL11] follows
the suggestion of Koblitz and Menezes [KM05] and uses a 256-bit elliptic curve which has a suitable

170



admissible bilinear map. As only the version offering 128-bit security is implemented in Intel’s SGX
SDK, we focus on this version of EPID which operates over the Fp256BN curve as standardized in [Int09].
This curve has embedding degree 12. However, our techniques are also applicable to the 80-bit version
of EPID.

7.2.4 Enhanced Privacy ID
7.2.4.1 Overview

Enhanced Privacy ID (EPID) is a protocol proposed to allow remote attestation of a hardware platform
without compromising the device’s privacy [BL11]. EPID allows a platform to sign objects without
exposing the platform identity to the verifiers, and it protects against adversaries who try to link multiple
signatures to the same platform. Following the notation of [BL11], an EPID scheme consists of four
entities. An Issuer I, a revocation manager R, a platform P and a verifier V. The revocation manager
maintains two revocations lists Priv-RL and Sig-RL. The scheme operates as follows:

Setup First, the issuer I runs the scheme’s setup algorithm Setup, on input 1k, where k is the security
parameter, obtaining a group public key gpk and a issuer secret key isk. That is,

(gpk, isk)← Setup(1k).

Join Next, each platform Pi and the issuer I perform a Join protocol where I’s input is (gpk, isk) and
Pi’s input is gpk. The Join protocol terminates with Pi learning a secret key ski which it will use to sign
messages to the verifier V. More formally,

〈⊥, ski〉 ← JoinI,Pi〈(gpk, isk), gpk〉.

Sign In order to sign a message m, using a group public key gpk, a secret key ski, and a signature based
revocation list Sig-RL, the ith platform Pi runs the signing algorithm Sign. If ski is not revoked (i.e.,
ski /∈ Sig-RL), Sign outputs a signature σ. Otherwise, Sign outputs ⊥. Formally,

⊥/σ ← Sign(gpk, ski,m,Sig-RL).

Verify To verify a signature σ on a message m using a group public key gpk, a private key-based
revocation list Priv-RL and a signature-based revocation list Sig-RL, the verifier V executes the verification
algorithm Verify. This algorithm outputs valid or invalid. The invalid output indicates that either σ is not
a valid signature on the message m or that the platform Pi signing m has been revoked. Formally,

valid/invalid← Verify(gpk,m,Priv-RL, Sig-RL, σ).

Revoke EPID supports two types of revocations. In case the revocation manager R knows the private
key of the platform Pi it wishes to revoke, it simply adds ski to the private key-based revocation list
Priv-RL by running the revoke algorithm. This results in an updated private key-based revocation list.
Formally, R performs

Priv-RL← Revoke(gpk,Priv-RL, ski).

Moreover, if R wants to revoke some platform based on a message-signature pair (m,σ) it signed but
without knowing its secret key, he can also execute the Revoke algorithm using gpk,Priv-RL, Sig-RL,m, σ
as inputs. This results in an updated signature-based revocation list Sig-RL. Formally,

Sig-RL← Revoke(gpk,Priv-RL, Sig-RL,m, σ).

7.2.4.2 Security Properties of EPID

In this section we briefly overview the security properties of the EPID scheme of [BL11]. We refer the
reader to [BL11] for formal discussions and definitions.

Correctness Informally, the correctness requirement states that every signature σ generated by a plat-
form Pi on a messagem with a secret key ski is valid, unless Pi has been revoked. More formally, let Σi be
the set of all signatures generated by Pi. We require that Verify(gpk,m,Priv-RL, Sig-RL,Sign(gpk, ski,m,Sig-RL)) =
valid if and only if ski /∈ Priv-RL and Σi ∩ Sig-RL = ∅.

171



Unlinkability At a high level, EPID’s unlinkability requirement guarantees that it is impossible to
identify the platform that produced a signature σ on some message m, nor is it possible to identify other
signatures signed by the same platform. More specifically, even in case a malicious issuer colludes with a
malicious verifier (such as in the case of a malicious remote attestation provider), knowing gpk, isk and a
list of message signature pairs (mi, σi)i=1,··· ,n is not sufficient for linking a pair m,σ to a specific secret
key sk or to other signatures signed by the same secret key.

Unforgeability At a high level, EPID’s unforgeability requirement states that it is impossible for the
attacker to forge a valid signature on some previously-unsigned message, without knowing a non-revoked
secret key. This holds even in the case when the attacker knows previously revoked secret keys, belonging
to compromised platforms. We refer the reader to [BL11] for a more formal discussion.

7.2.4.3 The Signing Algorithm

In this work, we attack the signing algorithm used by P to sign a message m. We will give a high-level
description of EPID’s signing algorithm in order to motivate the attack. We refer the reader to [BL11]
for the full details.

Let p be the order of the bilinear group pair (G1,G2) and let e : G1 × G2 → GT be an admissible
bilinear pairing (as defined in 7.2.3). The secret key ski used by the ith platform Pi to sign m consists
of ski = (A, x, y, f), where f is a random element of Zp and (A, x, y) is a BBS+ signature [ASM06] on
f . Following [BL11] and [CS97], we use the notation SPK{(a) : y = za}(m) to denote a signature on a
message m where the signature scheme used to sign m is derived from some interactive zero knowledge
proof-of-knowledge protocol via the Fiat-Shamir heuristic. In this notation, the parenthesized values (a)
are known to the platform Pi but not to the verifier V while all other values are public and thus known
to both Pi and V. Let Sig-RL be a signature-based revocation list, at a high level the algorithm proceeds
as follows:

1. Choose randomly B ← G3 and compute K := Bf , where G3 is a cyclic group of order p defined as
part of the scheme group public key gpk.

2. Choose a random a← Zp, and compute b← y+ ax , and T ← A · ha2 where h2 ∈ G2 is also part of
the scheme group public key gpk.

3. Run the following signature of knowledge protocol

SPK{(x, f, a, b) : Bf = K ∧ e(T, g2)−x · e(h1, g2)rf · e(h2, w)ra = e(T,w)/e(g1, g2)}(m)

where

(a) rx ← Zp, rf ← Zp, ra ← Zp, and rb ← Zp are chosen uniformly at random.
(b) c← H(gpk, B,K, T,R1, R2,m), where H is a cryptographic hash function.
(c) sx ← rx + cs, sf ← rf + cf , sa ← ra + ca, and sb ← rb + cb where all computations are

performed over Zp.
(d) The values g1, g2, h1, h2 are specified in the group public key gpk.

4. Set σ0 = (B,K, T, c, sx, sf , sa, sb).

5. Let Sig-RL = {(B1,K1), . . . , (Bn2 ,Kn2)}. For all i, compute σi = SPK{(f) : K = Bf ∧ Ki 6=
Bfi }(m).

6. If any zero-knowledge proofs in Step 4 fails, then output σ = ⊥. Otherwise, output the signature
σ = (σ0, σ1, · · · , σn2

).

Notice that if the attacker is able to leak the value of f by mounting a side-channel attack on the
exponentiation routine, he is able to break the unlinkability property of the EPID construction by linking
P to all its signatures, including past and future signatures. Next, notice that in Step 3 of the above
description, the platform P generates a random secret nonce rf ∈ Zp and computes an exponentiation
e(h1, g2)rf (where h1 ∈ G1 and g2 ∈ G2 were both published in gpk). The signature component σ0

172



includes the value sf = rf + cf where c is the hash over several public values generated during the
signing process.

As we show in Section 7.5, by recovering additional side-channel information about the length of the
nonce rf from several such signature operations, we are able to mount a lattice attack on the EPID
construction and completely recover the value of f . Since the values of B and K are also part of σ, we
are able to break the unlinkability property of the EPID construction by checking whether Bf equals K.

7.3 SGX EPID Provisioning and Attestation
Intel implements the EPID attestation through a combination of two enclaves, collectively known as the
architectural enclaves, and deployed as part of the SGX SDK. The provisioning enclave is responsible
for performing the EPID Join operation, effectively verifying the SGX hardware to the Intel key facility
and obtaining the attestation key. The quoting enclave implements the EPID Sign operation. It uses the
previously obtained attestation key to generate the signature attestation on each request. Note that the
provision operation only needs to be performed once when a trusted environment is being prepared.

7.3.1 Provisioning and Quoting Enclave Implementations
The provisioning enclave is signed by Intel and has a special attribute that allows it to derive the per-
manent provision key from the hardware fused provision secret. Intel SGX supports multiple keys for
different operations that can be retrieved using a special CPU instruction. Two of these keys, the pro-
vision key and the provision seal key, are only accessible to the provisioning enclave. The provisioning
enclave uses an ECDSA operation and the provision key to sign a message that authenticates the SGX
hardware to the Intel provisioning servers. However, the signing operation does not directly use the
128-bit provision key. Instead, a key-wrapping operation using AES-CMAC [SPLI06] over a hardcoded
plaintext generates the 256-bit ECDSA key. We skip the explanation of the entire authentication protocol
between the provisioning enclave and Intel provisioning server. After the authentication, the provisioning
enclave obtains the private attestation key f . The provisioning enclave uses the provision seal key to
store f on the disk in an encrypted form.

The quoting enclave unseals the attestation key stored by the provisioning enclave on each attestation
request. The attestation process follows the EPID scheme and results in an EPID signature. However, in
the quoting enclave implementation, this signature is encrypted using a hybrid RSA-AES-CMAC based
on a hardcoded RSA public key. While this operation is not part of the EPID scheme it does add a layer
of security to the EPID signatures used in SGX.

From an attacker perspective, this encryption hides the otherwise public EPID signature. Conse-
quently, to be able to mount the attack we describe below, the attacker needs to be able to decrypt the
EPID signatures. To allow us to decrypt the signatures, we modify the quoting enclave to use our own
public key, for which we know the private key. We then sign the modified enclave. In order to avoid
potential changes due to differences in the build environment, the change is applied to the binary file,
rather than to the source. Hence, aside from the RSA public key and the enclave metadata, our quoting
enclave is identical to the original.

We note that to perform the EPID verification, the attestation provider must be able to decrypt the
EPID signatures. Hence, a real attack is only possible from a malicious attestation provider. Nevertheless,
one of the main aims of the EPID protocol is to protect the privacy of the users and prevent a malicious
attestation provider from linking signatures to the hosts that signed them. Hence, our attack enables a
malicious attestation provider to break one of the main objectives of using the EPID protocol.

7.3.2 Scalar Multiplication in the Quoting Enclave
To perform a scalar multiplication, the quoting enclave recodes the scalar s using an extension of the
Booth recoding [Boo51] introduced in Chapter 6 and uses a fixed-window algorithm with a window size of
5 and the recoded scalar. Recoding with a window size w represents the scalar as a sequence of digits si
such that −2w−1 ≤ si ≤ 2w−1 and s =

∑
i 2wisi.

The algorithm, for which we provide the pseudo-code in Algorithm 17, precomputes the values Pi = P i

for an input point P and 0 ≤ i ≤ 2w−1. It then scans the scalar from the most significant non-zero
digit to the least significant digit. For each digit, it performs w squaring operations of an intermediate

173



Algorithm 17 Scalar Multiplication in the Quoting Enclave

1: procedure MulPoint(point P , window size w, scalar s represented as s0 . . . sn using the Booth
recoding)

2: P0 ← O
3: for i← 1 to 2w−1 do
4: Pi ← P · Pi−1

5: i← max{j : sj 6= 0}
6: r ← P|si|
7: i← i− 1
8: while i ≥ 0 do
9: r ← r2w

10: t← P|si|
11: r ← r · ctSelect(t, t−1, isNegative(si))
12: i← i− 1

13: return r

result r followed by a multiply of the precomputed value matching the value of the digit or its inverse
(line 12). To protect against cache attacks, the algorithm uses a constant-time select operation for the
decision whether to use the precomputed value or its inverse. Furthermore, it uses the scatter-gather
approach [GGO+09, BGS06] to mask the cache fingerprint of accesses to the precomputed values. For
simplicity, we omit this scatter-gather operation from the algorithm.

Despite the countermeasures taken, the algorithm leaks the length of the recoded representation of the
scalar. More specifically, Algorithm 17 starts from the most significant non-zero digits (line 6), leaking
the length of the Booth representation of the scalar. The length of the recoded representation corresponds
to the number of leading zero bits in the scalar. A full-length recoded scalar has 52 digits and the main
loop of Algorithm 17 iterates 51 times. When both bits 255 and 256 of the scalar are 0, the recoded scalar
has 51 digits and the loop iterates 50 times. Each additional five clear bits correspond to shortening the
recoded scalar by one digit and to a resulting decrease in the number of iterations through the loop.
Thus an adversary who can count the number of iterations through the main loop of Algorithm 17 or
accurately measure the time it takes to perform the scalar multiplication can recover the values of some
of the most significant bits of the scalar.

7.4 Short Scalar Leakage via High Resolution Side Channels
In order to extract the key leakage of EPID from an SGX quoting enclave we monitor the number of loop
iterations via the L1 data cache, which is a convenient channel providing high measurement resolution.

7.4.1 Controlled Prime+Probe Attack
In this attack, we follow the scenario of [MIE17] and apply a high-resolution Prime+Probe attack in a
controlled environment with respect to the OS adversarial model. More specifically,

1. The processor is configured to operate on a constant frequency to avoid dynamic changes of fre-
quency. This reduces noise by making time measurements more accurate.

2. The thread running the quoting enclave and the Prime+Probe code is isolated on one physical
core, while all other tasks of the system are placed on other physical cores of the system. This
removes noise caused by memory activities of irrelevant operations from the monitored core and its
L1 caches.

3. The timer interrupt handler on the attack core is configured to be triggered with a very high
frequency. Thus, the quoting enclave thread can only execute a few instructions between each
interrupt. In the interrupt handler, we perform Prime+Probe on the 64 L1D cache sets. As the
target quoting enclave is only able to perform a few memory operations in each time frame between
two consecutive interrupts, the Prime+Probe reveals all memory accesses of the enclave with high
temporal and spatial resolution.

174



Start End

500 1000 1500 2000 2500
Observations

0

2

4

6

8

10

12

14

16

L
1D

 C
ac

h
e 

S
et

s

Figure 7.1: Heatmap of 16 different cache sets for the scalar multiplication. Each cache set that has
a repetitive memory pattern, for example sets 7, 9 and 13, shows 48 repetitions, indicating that the
ephemeral key bit size is less than (48 + 1) · 5 = 245 bits. The red lines mark the start and the end of
the repetitive memory pattern.

Figure 7.1 shows the observations of 16 different cache sets for the quoting enclave Booth multiplier. Each
loop of the multiplier executes several memory operations affecting different cache sets at different times
in a periodic way. As a result, we can count the number of iterations of the main loop of Algorithm 17 by
looking at any cache set that has a periodic memory access pattern. Because the main loop performs one
iteration for each w-bit digit following the first non-zero digit, counting the number of iteration provides
information on the bit length of the scalar.

70
75
80
85

C
yc

le
s

55
60
65
70

C
yc

le
s

70
75
80
85

C
yc

le
s

50 100 150 200 250
Observations

70
75
80
85
90

C
yc

le
s

Figure 7.2: Cache access patterns on four different sets during the computation of the main loop of
Algorithm 17. Each set features a different repeating pattern of the same length that can be used to
count the number of loop iterations executed by the quoting enclave.

7.4.2 Loop Counting Analysis

Our goal is to determine the loop count for the Booth recoding of the scalar rf using the above-described
side-channel setup and to detect signatures that have been generated using short scalars. Our attack
setup is configured to start the interrupted Prime+Probe measurement right before the call to the quoting
enclave and to finish right after the enclave exits. The observations are stored in a circular buffer capable
of recording 50,000 samples. The loop repetition leakage affects several cache sets in different ways, as
shown in Figure 7.2.

175



0 500 1000 1500 2000 2500 3000 3500 4000 4500
Observations

65

70

75

80

85

90

95

100

C
yc

le
s

48

Brf Loop Count

Figure 7.3: Counting loop iterations on set 02: The number of equally spaced high peaks within a defined
signal pattern reveals the number of loop iterations to be 48 in this example.

Automatically Counting Loop Iterations To automate the extraction of the number of loop it-
erations, we implemented several heuristics using the Matlab signal processing toolbox. A first layer
locates the window for the start and end of the multiplier within the trace of 50,000 sample points. A
second filter counts the number of repeated cache access patterns within the relevant window, which
directly corresponds to the number of executed loops of the scalar multiplication. This information can
be extracted from the periodic leakage in several of the cache sets. As depicted in Figure 7.2, the signal
pattern from the main loop of Algorithm 17 is unique for each cache set. We use five different loop
counters that use the information from four cache sets to count the number of loops on each signature.
The first four counters detect periodic behavior to each of the four cache sets separately, while the last
counter performs a reverse check on set 02. Figure 7.3 shows a successful loop counting on set 02 that
returns a count of 48 iterations, thus revealing the 12 most significant bits of the scalar are clear.

Handling Measurement Noise Even though the L1D cache channel has a very high resolution, there
is still some noise that can result in a failure to count the correct number of loop iterations for each of
the five counters. Common sources of error are failing to accurately detect the beginning and the end
of the multiplier window, under-counting short peaks and over-counting occasional noises that introduce
unexpected peaks or pattern within the sampling of a multiplier window. However, our experimental
results show that if four of the five loop counters agree on the number of loop iterations, the loop
counting would be error free. We automatically analyzed 11,080 signature operations and found 1214
50-loop, 39 49-loop and 2 48-loop short keys without any error.

Further Reducing the Number of Signatures via Manual Processing Although the fully au-
tomated approach returns enough short-key signatures to recover the key, it discards many samples that
carry valuable information. Scalars resulting in a 49-loop occur with a probability of 1/128. Thus, the
automated approach, while ensuring no false positives, only detects about 45% of such occurrences. The
number of required signature observations can be reduced by combining the automatic loop counting
with manual verification. By returning all traces where three or more counters agree, the automatic
loop counting returns 1723 50-loop, 54 49-loop and 5 48-loop candidates, with 0.4%, 5.0% and 0.0%
error, respectively. Further reducing to the minimum of two matching counters yields 2155 50-loop, 117
49-loop and 7 48-loop candidates, with 5.7%, 52% and 14% error, respectively. In this case, manual
post-processing is necessary, but certainly tractable, e.g. for the 117 49-loop candidates. We manually
verified 59 of the 49-loop candidates, thus increasing the ratio of found occurrences of 49-loop candidates
to 68%.

7.5 A Lattice Attack on EPID
The side channel gives us information about the length of rf used to compute the signature component
sf = rf + cf (mod p), where sf and c are public information, p is the 256-bit order of the elliptic curve,
and f is the platform’s secret membership key. We will use this information to solve for f . The problem
we consider fits into the original Hidden Number Problem setting explained in Chapter 6. We begin by

176



explaining how to convert our problem to a Hidden Number Problem instance.

7.5.1 Conversion to a Hidden Number Problem
In the following, we will drop the subscript f from the signature component, and use a subscript i to
index the sample number. We obtain many samples {(si, ci)}i satisfying

si ≡ ri + cif (mod p), (7.1)

as well as information about whether the number of most significant zero bits in ri is 0, 2, 7, or 12. That
is, we learn that |si − cif | < p/2li where li is the number of 0 bits we learn from ri. This is identical to
the Hidden Number Problem as described in Chapter 6.

Rebalancing the Nonces. Recall that in Chapter 6, Section 6.3.2.1 we mentioned how to renormalize
the signatures to obtain an equivalent problem which in practice requires less samples. This optimization
can be applied here.

Naively, the number of bits of ri that we learn is 2 bits for a 50-loop sample, 7 bits for a 49-loop sam-
ple, and 12 bits for a 48-loop sample. However, these ri values are positive, while the lattice construction
works with both positive or negative values for ri. Since we know the length of the ri, ri ≤ 2ni , where
ni = 256− li in our application, we can recenter the ri around 0 to reduce the size of our solution by one
bit. That is, we can rewrite Equation 7.1 as s′i − r′i ≡ cif mod p, with s′i = si − 2ni and r′i = ri − 2ni . In
this way, we obtain a new problem with −p/2li+1 ≤ ri ≤ p/2li+1. The effect of rebalancing the nonces
on the success probability of the attack can be seen in Figure 7.4.

7.5.2 Solving the Hidden Number Problem
As already discussed in Chapter 6, there are two standard approaches to solving the Hidden Number
Problem: via lattices or via Fourier analysis [IEE00, DHMP13]. We use the lattice-based approach in
this work, since it is quite efficient in the case of relatively large numbers of bits known (2, 7, or 12 in
our attacks) and relatively few samples.

Solving the Hidden Number Problem via a lattice-based approach is done by solving SVP in an
adequately constructed lattice. In our context, this lattice is generated by the following basis

B =



2l1+1p . . . 0 0

0 2l2+1p 0
...

. . .
2lm+1p 0

2l1+1c1 2l2+1c2 . . . 2lm+1cm 1 0
2l1+1s1 2l2+1s2 . . . 2lm+1sm 0 p


, (7.2)

where the re-scaling of the basis comes from the bounds |ri| < p/2li+1 after rebalancing the nonces,
different for each line as the information we learn for each sample varies.

Question 89. Why do we expect to find the secret key?

We briefly recall the argument that allows the Hidden Number Problem to recover the secret key, applied
to our specific context. Because |ri| = |si − cif | ≤ p/2li+1, we know that a vector containing the
coefficients si will be particularly close to a vector containing the secret key f . Let B′ be the basis
formed by the upper quadrant of B, delimited by the −−. One could then find f by solving CVP
(or more precisely BDD since we know a (small) bound on the distance) in L(B′) with target vector
(2l1+1s1, 2

l2+1s2, · · · , 2lm+1sm, 0).
Instead, we will solve uSVP in the lattice L(B), constructed by adding the aforementioned target

vector to the basis B′. This embedding should remind the reader of Kannan’s embedding technique
presented in Chapter 2. By solving uSVP in L(B), we hope to find

v = (2l1+1r1, · · · , 2lm+1rm, f,−p).

177



18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0

0.5

1

7 bits known12 bits known

Number of samples

S
u
cc
es
s
p
ro
b
ab

il
it
y recentered

not recentered

Figure 7.4: We show the success probability of key recovery using 49-loop samples, which reveal the 7
most significant bits of the nonces, and 48-loop samples, which reveal the 12 most significant bits learned,
for different numbers of samples. Recentering the nonces has a noticeable impact on the number of
samples required for key recovery.

as a short vector in the lattice. Indeed, v = zB for some z = (z1, . . . , zm, f,−1) with zi ∈ Z.
Benger et al. [BvSY14] noted that the shortest vector in this lattice is actually (0, . . . , 0, p, 0) and

the desired vector v is usually the second shortest vector. We can use LLL or BKZ to compute a
reduced basis. We have detL(B) = 2m+

∑
i li · pm+1 and ||v||2 ≈

√
m+ 2p, and we hope to find v when

||v||2 ≤ (1 + ε)m+1(detB)1/(m+2) where 1 + ε is the approximation factor achieved by the lattice basis
reduction algorithm we use.

Figure 7.4 shows the experimental success probability of the attack for 49-loop samples, where 7 most
significant bits of the nonce are known, and 48-loop samples, where 12 most significant bits of the nonce
are known.

7.5.3 Performance Tradeoffs
7.5.3.1 Using Samples of Different Lengths

Benger et al. [BvSY14] describe how to take advantage of different length samples by using different
values for each li in the lattice basis given in Equation 7.2. Similarly, for our attack, this allows us to
reduce the total number of samples we need to collect by using samples with different loop lengths. This
results in a performance tradeoff: we can decrease the signature sampling time at the cost of increasing
the time spent running lattice basis reduction to recover the secret key.

24 26 28 30 32 34 36 38 40

0

0.5

1

7-bit samples

S
u
cc
es
s
p
ro
b
ab

il
it
y 0 2-bit samples

5 2-bit samples
10 2-bit samples
20 2-bit samples
30 2-bit samples
40 2-bit samples

Figure 7.5: We can reduce the total number of signatures needed to carry out a successful attack by
including samples of different sized nonce observations in the lattice. We constructed different sized
lattices by including both samples that had revealed 7 bits of the nonce and samples that had revealed
2 bits of the nonce. The lattice dimension for each experiment is the total number of samples + 2. We
measured the success probability over 100 trials on random problem instances, solved using BKZ-30.

178



35 40 45 50 55 60 65 70 75 80 85

0

0.5

1

49-loop samples (7 bits known)

S
u
cc
es
s
p
ro
b
a
b
il
it
y 0 errors

1 1-loop error
2 1-loop errors
1 2-loop error
2 2-loop errors

Figure 7.6: The lattice still finds the correct solution some fraction of the time, even in the presence
of collection errors for the error model in our attack. We show the probability of successful recovery
when the lattice contains a number of randomly generated samples whose actual nonce sizes are one or
two windows, or 5 bits or 7 bits larger than the bound given in the lattice. Each point represents 100
randomly generated trials of random problem instances, solved using BKZ-30.

Using only 49-loop samples in the lattice, corresponding to learning 7 most significant bits of the
nonce, we needed 38 samples to achieve above a 50% success rate in the lattice construction. When we
added 30 50-loop samples (in which we learn 2 most significant bits) to the lattice, we had above a 50%
success rate with 30 49-loop samples. We show the improvement as the number of samples increases in
Figure 7.5. Each point represents 100 trials using BKZ with block size 30. For the 73-dimensional lattices
containing 31 49-loop samples and 40 50-loop samples (corresponding to a 100% success rate) the BKZ
algorithm took 52 seconds on average to complete on a single core of our test machine.

7.5.3.2 Error Correction

It is quite common in a side-channel attack that there is some error during the collection process. In
the case of our attack, an error while counting the number of loops during the modular exponentiation
would result in an incorrect bound on the size of one or more of the ri being collected. If the loop count
is higher than the actual value, this is not a problem: either the sample would be excluded from the key
recovery process, or the size of the ri is still correct for the bound we use in the lattice and we expect to
still find the correct solution. However, if the error happens in the other direction and the measurement
process undercounts the number of loops, we will incorporate samples into the lattice whose nonce sizes
are larger than the bounds we assign for them. In this case, the lattice construction can fail, because the
vector may no longer correspond to the correct key.

Much of the prior work on side-channel attacks with errors for similar constructions either ignored
this issue entirely, dealt with it via signal processing, or subsampled different subsets of samples until an
error-free sample is obtained [GPP+16, ARAM17].

However, we find experimentally that when the lattice includes more samples than necessary, key
recovery may still be possible in the presence of the types of errors we encountered in our attack. In
our measurements, an error corresponds to an incorrect loop count. To model this in experiments, we
generated instances of 49-loop samples, and inserted errors corresponding to samples that should have
been measured as 50-loop or 51-loop samples. Recall that the nonce in a 49-loop sample is contained in
the interval [2244, 2249); we generated 50-loop errors uniformly from the interval [2249, 2254) and 51-loop
errors uniformly from the interval [2254, p), inserted these into our samples, and attempted key recovery.
Figure 7.6 shows the success probability of our lattice construction when the lattice contains different
numbers of errors. Each plotted sample represents 100 randomly generated trials with the specified type
of error run with BKZ-30. The recovery rate with errors whose most significant bits are 1 is similar to
the error rates for the 51-loop samples.

As a concrete example, a 75-sample lattice with 2 1-loop errors succeeded 42% of the time in our
experiments. This corresponds to a 2.9% error rate. We would expect a 39-sample lattice (which succeeded
with 100% probability in our experiments) to achieve 0% errors with probability 0.9739 = 0.35, or 35%
of experiments.

179



7.5.4 Recovering f

Using the automatically classified data from the side-channel attack described in Section 7.4, we were
able to recover f using BKZ-30 on 37 error-free 49-loop samples, corresponding to 7 most significant
bits of each ephemeral ri known. It took 10,600 total signature samples to collect this data. Next, by
using samples of different loop lengths we can further reduce the total number of signatures required.
More specifically, in Table 7.1 we show some different strategies for successful key recovery given our
empirical signature data. For the row corresponding to n signature data points, we used all of the 48-loop
(corresponding to 12 bits known) and 49-loop (corresponding to 7 bits known) samples that were detected
during the first n signature measurements in our data, and then added 50-loop (corresponding to 2 bits
known) samples from the first n signatures to the lattice until key recovery succeeded.

As described in Section 7.4.2, fewer signatures are required if manual inspection is used to help classify
the signals. In that case, we would only need less than 7,500 observed signatures to obtain enough 49-loop
observations for a full key recovery.

Signatures 48-loop 49-loop 50-loop BKZ block size BKZ time
10300 2 35 0 2 0.1s
10000 2 31 10 20 0.2s
9000 2 29 21 30 1.4s
8000 2 25 35 30 4.5s

Table 7.1: Strategies for key recovery with different numbers of signature samples.

7.6 Conclusions
In this work, we show yet another leakage in highly sensitive code—the implementation of the EPID
protocol for SGX remote attestation. While the attack only allows a malicious attestation provider to
break the link signatures to a host, the unlinkability guarantee it breaks is the main reason for using the
EPID protocol in the first place. From the structure of the code, it is clear that the developers have
attempted to eliminate side-channel leaks. Thus, this incident demonstrates that producing constant-time
code is not trivial and that better tools for facilitating such development are required.

This work extends the art of recovering the long-term key from partial information on the ephemeral
keys. First, we apply known techniques used in the context of digital signatures to the wider context of
zero-knowledge proofs. Second, we investigate the handling of erroneous inputs for the hidden number
problem. We show that prior common belief notwithstanding, lattices can handle some erroneous input.
Exploring the trade-offs between past approaches of selecting a random subset of the inputs and the new
approach of using the inputs in the lattice is left for future work.

180



Chapter 8

Attacking ECDSA signature protocol
with EHNP

Attacking ECDSA with wNAF implementation for the scalar multiplication first requires some side-
channel analysis to collect information, then lattice based methods to recover the secret key. In this
chapter, we reinvestigate the construction of the lattice used in one of these methods, the Extended Hid-
den Number Problem (EHNP). We find the secret key with only 3 signatures, thus reaching a known
theoretical bound, whereas best previous methods required at least 4 signatures in practice. Given a
specific leakage model, our attack is more efficient than previous attacks, and for most cases, has better
probability of success. To obtain such results, we perform a detailed analysis of the parameters used
in the attack and introduce a preprocessing method which reduces by a factor up to 7 the total time
to recover the secret key for some parameters. We perform an error resilience analysis which has never
been done before in the setup of EHNP. Our construction finds the secret key with a small amount of
erroneous traces, up to 2% of false digits, and 4% with a specific type of error.

This chapter is joint work with Rémi Piau and Cécile Pierrot and was published in
the proceedings of the Africacrypt 2020 conference [DPP20].

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.2 Attacking ECDSA using lattices . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.1 Using EHNP to attack ECDSA . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.2 Constructing the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.3 Improving the lattice attack . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.3.1 Reducing the lattice dimension: the merging technique . . . . . . . . . . . 187
8.3.2 Preprocessing the traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.4 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.5 Error resilience analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.5.1 Tables for error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.6 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.1 Introduction
The Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01], first proposed in 1992 by Scott
Vanstone [Van92], is a standard public key signature protocol widely deployed. Its signing algorithm

181



requires scalar multiplications of a point P on an elliptic curve by an ephemeral key k. Since this
operation is time-consuming and often the most time-consuming part of the protocol, it is necessary to
use an efficient algorithm. The Non Adjacent Form (NAF) and its windowed variant (wNAF), presented
in Chapter 6, were introduced as an alternative to the binary representation of the nonce k to reduce the
execution time of the scalar multiplication. Indeed, we recall that the NAF representation does not allow
two non-zero digits to be consecutive, thus reducing the Hamming weight of the representation of the
scalar. This improves on the time of execution as the latter is dependent on the number of non-zero digits.
The wNAF representation is present in implementations such as in Bitcoin, as well as in the libraries
Cryptlib, BouncyCastle and Apple’s Common-Crypto. Moreover, until recently (May 2019), wNAF was
present in OpenSSL.

However, implementing the scalar multiplication using wNAF representation and no added layer of
security makes the protocol vulnerable to side-channel attacks. In our case, the leakage recovered from
a side-channel attack corresponds to differences in the execution time of a part of the signing algorithm,
observable by monitoring the cache.

For ECDSA, cache side-channel attacks such as Flush+Reload [YB14, YF14] have been used to
recover information about either the sequence of operations used to execute the scalar multiplication, or
for example in [GB17] the modular inversion. For the scalar multiplication, these operations are either
a multiplication or an addition depending on the bits of k. This information is usually referred to as a
double-and-add chain or the trace of k. A trace is created when a signature is produced by ECDSA and
thus we talk about signatures and traces in an equivalent sense. At this point, we ask how many traces
need to be collected to successfully recover the secret key. Indeed, from an attacker’s perspective, the
least traces necessary, the more efficient the attack is. This quantity depends on how much information
can be extracted from a single trace and how combining information of multiple traces is used to recover
the key. We work on the latter to minimize the number of traces needed.

The nature of the information obtained from the side-channel attack allows to determine what kind
of method should be carried out to recover the secret key. As already explained in Chapter 6, the
Hidden Number Problem is an example of algorithm which allows to recover the secret key of ECDSA
in polynomial time when consecutive bits of the nonces k are known. The basic structure of the attack
algorithm is to construct a lattice which contains the knowledge of consecutive bits of the ephemeral
keys, and by solving SVP, to recover the secret key. However, these results considered perfect traces,
but obtaining traces without any misreadings is very rare. In 2018, Dall et al. [DDME+18] included an
error-resilience analyze to their attack: they showed that key recovery with HNP is still possible even in
the presence of erroneous traces. This work is described in Chapter 7.

In 2016, Fan, Wang and Cheng [FWC16] used another lattice-based method to attack ECDSA: the
Extended Hidden Number Problem (EHNP) [HR07]. EHNP mostly differs from HNP by the nature of
the information given as input. Indeed, the information required to construct an instance of EHNP is not
sequences of consecutive bits, but the positions of the non-zero coefficients in any representation of some
integers. This model, which we consider in this article as well, is relevant when describing information
coming from Flush+Reload or Prime+Probe attacks for example, the latter giving a more generic scenario
with no shared data with the spy. In [FWC16], the authors are able to extract 105.8 bits of information
per signature on average, and thus require in theory only 3 signatures to recover a 256-bit secret key. In
practice, they were able to recover the secret key using 4 error-free traces.

In order to optimize an attack on ECDSA various aspects should be considered. By minimizing the
number of signatures required in the lattice construction, one minimizes the number of traces needed to
be collected during the side-channel attack. Moreover, reducing the time of the lattice part of the attack,
and improving the probability of success of key recovery allows to reduce the overall time of the attack.
In this work, we improve on all three of these aspects. Furthermore, we propose the first error-resilience
analysis for EHNP and show that key recovery is still possible with erroneous traces too.

8.1.1 Our contribution
In this work, we reinvestigate the attack against ECDSA with wNAF representation for the scalar multi-
plication using EHNP. We focus on the lattice part of the attack, i.e., the exploitation of the information
gathered by the side-channel attack. We first assume we obtain a set of error-free traces from a side-
channel analysis. We preselect some of these traces to optimize the attack. The main idea of the lattice

182



Number of Our attack [FWC16]
signatures Time Success (%) Time Success (%)

3 39 hours 0.2% – –
4 1 hour 17 minutes 0.5% 41 minutes 1.5%
5 8 minutes 20 seconds 6.5% 18 minutes 1%
6 ≈ 5 minutes 25% 18 minutes 22%
7 ≈ 3 minutes 17.5% 34 minutes 24%
8 ≈ 2 minutes 29% – –

Table 8.1: Comparing attack times with [FWC16], for 5000 experiments.

part is then to use the ECDSA equation and the knowledge gained from the selected traces to construct a
set of modular equations which include the secret key as an unknown. These modular equations are then
incorporated into a lattice basis similar to the one given in [FWC16], and a short vector in it will contain
the necessary information to reconstruct the secret key. We call experiment one run of this algorithm.
An experiment succeeds if the algorithm recovers the secret key.

A new preprocessing method. The idea of selecting good traces beforehand has already been ex-
plored in [WF17]. The authors suggest three rules to select traces that improve the attack on the lattice
part. Given a certain (large) amount of traces available, the lattice is usually built with a much smaller
subset of these traces. Trying to identify beforehand the traces that would result in a better attack is a
clever option. The aim of our new preprocessing - that completely differs from [WF17] - is to regulate
the size of the coefficients in the lattice, and this results in a better lattice reduction time. For instance,
with 3 signatures, we were able to reduce the total time of the attack by a factor of 7.

Analyzing the attack. Several parameters occur while building and reducing the lattice. We analyze
the performance of the attack with respect to these parameters and present the best parameters that
optimize either the total time or the probability of success.

First, we focus on the attack time. Note that when talking about the overall time of the attack,
we consider the average time of a single experiment multiplied by the number of trials necessary to
recover the secret key. We compare our times with the numbers reported in [FWC16, Table 3] with
method C. Indeed, methods A and B in [FWC16] use extra information that comes from choices in the
implementation which we choose to ignore as we want our analysis to remain as general as possible.
Moreover, in order to have a fair comparison with our methodology, the times reported in [FWC16] to
which we compare ourselves have to be multiplied by the number of trials necessary for their attack
succeed, thus increasing their total time by a lot. Using 5 signatures, their best total time would be
around 15 hours instead of 18 minutes. The comparison is justified as we consider the same leakage
model, and compare timings when running experiments on similar machines. For 4 signatures, our attack
is slightly slower. For 4 signatures, no times are reported without method A. Thus, we have no other
choice than to compare our times with theirs, using A. Yet their time for 4 signatures without A should
at least be the time they report with it. However, when considering more than 4 signatures, our attack
is faster. We experiment up to 8 signatures to further improve our overall time. In this case, our attack
runs at best in 2 minutes and 25 seconds. Timings for 8 signatures are not reported in [FWC16], and
the case of 3 signatures was never reached before our work. In Table 8.1, we compare our times with the
fastest times reported by [FWC16]. We choose their fastest times but concerning our results we choose
to report experiments which are faster (not the fastest) with, if possible, better probability than theirs.

The overall time of the attack is also dependent on the success probability of key recovery. From
Table 8.2, one can see that our success probability is higher than [FWC16], except for 7 signatures. They
have 68% of success with their best parameters whereas we only reach 45% in this case.

For the sake of completeness, we mention that in [vSY15], the authors use HNP to recover the secret
key using 13 signatures. Their success probability in this case is around 54 % and their overall time is
close to 20 seconds, hence much faster. However, as their leakage model is different, we do not further
mention their work.

183



Number of Our attack [FWC16]
signatures Success (%) Time Success (%) Time

3 0.2% 39 hours – –
4 4% 25 hours 28 minutes 1.5% 41 minutes
5 20% 2 hours 42 minutes 4% 36 minutes
6 40% 1 hour 4 minutes 35% 1 hour 43 minutes
7 45% 2 hours 36 minutes 68% 3 hours 58 minutes
8 45% 5 hours 2 minutes – –

Table 8.2: Comparing success probability with [FWC16], for 5000 experiments.

Finding the key with only three signatures. Overall, combining a new preprocessing method, a
modified lattice construction and a careful choice of parameters allows us to mount an attack which works
in practice with only 3 signatures. However, the probability of success in this case is very low. We were
able to recover the secret key only once with BKZ-35 over 5000 experiments. If we assume the probability
is around 0.02%, as each trial costs 200 seconds on average, we can expect to find the secret key after 12
days using a single core. Note that this time can be greatly reduced when parallelizing the process, i.e.,
each trial can be run on a separate core. On the other hand, if we use our preprocessing method, with 3
signatures we obtain a probability of success of 0.2% and a total time of key recovery of 39 hours, thus
the factor 7 of improvement mentioned above. Despite the low probability of success, this result remains
interesting nonetheless. Indeed, the authors in [FWC16] reported that in practice, the key couldn’t be
recovered using less than 4 signatures and we improve on their result.

Resilience to errors. We also investigate the resilience to errors of our attack. Such an analysis has
not yet been done in the setup of EHNP. It is important to underline that collecting traces without
any errors using any side-channel attack is very hard. Previous works used perfect traces to mount the
lattice attack. Thus, it required collecting more traces. As pointed out in [FWC16], more or less twice as
many signatures are needed if errors are considered. In practice, this led [FWC16] to gather on average 8
signatures to be able to find the key with 4 perfect traces. We experimentally show that we are still able
to recover the secret key even in the presence of faulty traces. In particular, we find the key using only 4
faulty traces, but with a very low probability of success. As the percentage of incorrect digits in the trace
grows, the probability of success decreases and thus more signatures are required to successfully recover
the secret key. For instance, if 2% of the digits are wrong among all the digits of a given set of traces, it
is still possible to recover the key with 6 signatures. This result is valid if errors are uniformly distributed
over the digits. However, we have a better probability to recover the key if errors consist in 0-digit faulty
readings, i.e., 0 digits read as non-zero. In other words, the attack could work with a higher percentage
of errors, around 4%, if we could ensure from the side-channel attack and some preprocessing methods
that none of the non-zero digits have been flipped to 0.

8.2 Attacking ECDSA using lattices
As explained in Chapter 6, by using side-channel attacks, one can recover information about the wNAF
representation of the nonce k. In particular, it allows to know the positions of the non-zero coefficients
in the representation of k. However, the value of these coefficients are unknown. This information can
be used in the setup of the Extended Hidden Number Problem (EHNP) to recover the secret key. For
many messages m, we use ECDSA to produce signatures (r, s) and each run of the signing algorithm
produces a nonce k. We assume we have the corresponding trace of the nonce, that is, the equivalent
of the double-and-add chain of kG using wNAF. The goal of the attack is to recover the secret α while
optimizing either the number of signatures required or the total time of the attack.

8.2.1 Using EHNP to attack ECDSA
From the ECDSA algorithm introduced in Chapter 6, Section 6.3.1.2, we know that given a message m,
the algorithm outputs a signature (r, s) such that

αr = sk −H(m) (mod q) (8.1)

184



where q is the prime order of the group, here the rational points of an elliptic curve. The value H(m)
is just some hash of the message m. We consider a set of u signature pairs (ri, si) with corresponding
message mi that satisfy Equation (8.1). For each signature pair, we have a nonce k. Using the wNAF
representation of k introduced in Chapter 6, we write k =

∑`
j=1 kj2

λj , with kj ∈ {±1,±3, . . . ,±(2w−1)}
and the choice of w depends on the implementation. Note that the coefficients kj are unknown, however,
the positions λj are supposed to be known via some side-channel leakage. It is then possible to represent
the ephemeral key k as the sum of a known part, and an unknown part. As the value of kj is odd, one
can write kj = 2k′j + 1, where −2w−1 ≤ k′j ≤ 2w−1 − 1. Using the same notations as in [FWC16], set
dj = k′j + 2w−1, where 0 ≤ dj ≤ 2w − 1. In the rest of the chapter, we will denote by µj the window-size
of dj . Note that here, µj = w but this window-size will be modified later. This allows to rewrite the
value of k as

k =
∑̀
j=1

kj2
λj = k̄ +

∑̀
j=1

dj2
λj+1, (8.2)

with k̄ =
∑`
j=1 2λj −

∑`
j=1 2λj+w. The expression of k̄ represents the known part of k. By substituting

k in Equation (8.2), we get a system of modular equations:

αri −
`i∑
j=1

2λi,j+1sidi,j − (sik̄i −H(mi)) ≡ 0 (mod q) (8.3)

where the unknowns are α and the di,j . The known values are `i, which is the number of non-zero digits
in k for the ith sample, λi,j , which is the position of the jth non-zero digit in k for the ith sample and k̄
defined above. Equation (8.3) is then used as input to EHNP, following the method explained in [HR07].
The problem of finding the secret key is then reduced to solving the short vector problem in a given
lattice presented in the following section.

8.2.2 Constructing the lattice

Before giving the lattice basis construction, we redefine Equation (8.3) to reduce the number of unknown
variables in the system. This will allow us to construct a lattice of smaller dimension. Again, we use the
same notations as in [FWC16].

Eliminating one variable. One straightforward way to reduce the lattice dimension is to eliminate a
variable from the system. In this case, one can eliminate α from Equation (8.3). Let Ei denote the ith
equation of the system. Then by computing r1Ei − riE1, we get the following new modular equations

∑`1
j=1 (2λ1,j+1s1ri)︸ ︷︷ ︸

:=τj,i

d1,j +
∑`i
j=1 (−2λi,j+1sir1)︸ ︷︷ ︸

:=σi,j

di,j

− r1(sik̄i −H(mi)) + ri(s1k̄1 −H(m1))︸ ︷︷ ︸
:=γi

≡ 0 (mod q).
(8.4)

Using the same notations as in [FWC16], we define τj,i = 2λ1,j+1s1ri, σi,j = −2λi,j+1sir1 and γi =
r1(sik̄i − H(mi)) + ri(s1k̄1 − H(m1)) for 2 ≤ i ≤ u, 1 ≤ j ≤ `i. Even if α is eliminated from the
equations, if we recover some di,j values from a short vector in the lattice, we can recover α using any
equation in the modular system (8.3). We now use Equation (8.4) to construct the lattice basis.

From a modular system to a lattice basis. Let L be the lattice constructed for the attack, and we
have L = L(B) where the lattice basis B is given below. Let m = maxi,j µij for 1 ≤ j ≤ `i and 2 ≤ i ≤ u.
We set a scaling factor ∆ ∈ N to be defined later. The lattice basis is given by

185



B =

Eq (8.4), i = 2 . . . Eq (8.4), i = u



∆2mq 0 0 0

0
. . .

...
0 · · · ∆2mq 0

∆2mτ1,2 . . . ∆2mτ1,u 2m−µ1,1

...
... 0

. . .
∆2mτ`1,2 . . . ∆2mτ`1,u 2m−µ1,`1

∆2mσ2,1 0 0 2m−µ2,1

...
...

. . .

∆2mσ2,`2

... 2m−µ2,`2

0
. . . 0

...
. . .

... ∆2mσu,1 2m−µu,1

...
...

. . .
0 0 ∆2mσu,`u 0 2m−µu,`u

∆2mγ2 . . . ∆2mγu 2m−1 . . . 2m−1 2m−1

.

Let n = (u − 1) + T + 1 = T + u, with T =
∑u
i=1 `i, be the dimension of the lattice. The u − 1 first

columns correspond to Equation 8.4 for 2 ≤ i ≤ u. Each of the remaining columns, except the last one,
correspond to a dij , and contains coefficients that allow to regulate the size of the dij . The determinant
of L is given by detL = qu−1 (∆2m)

u−1
2
∑
i,j(m−µi,j)2m−1.

The lattice is built such that there exists w ∈ L which contains the unknowns di,j . To find it, we
know there exist some values t2, t2, . . . , tu such that if v = (t2, . . . , tu, d1,1, . . . , du,`u ,−1), we get w = vB,
and

w = (0, . . . , 0, d1,12m−µ1,1 − 2m−1, . . . , du,`u2m−µu,`u − 2m−1,−2m−1).

If we are able to find w in the lattice, then we can reconstruct the secret key α. In order to find w,
we estimate its norm and make sure w appears in the reduced basis. After reducing the basis, we look
for vectors of the correct shape, i.e., with sufficiently enough zeros at the beginning and the correct last
coefficient, and attempt to recover α for each of these.

How the size of ∆ affects the norms of the short vectors. In order to find the vector w in the
lattice, we reduce B using LLL or BKZ. For w to appear in the reduced basis, one should at least set ∆
such that

||w||2 ≤ (1.02)n(detL)1/n. (8.5)

The vector w we expect to find has norm ||w||2 ≤ 2m−1
√
T + 1. From Equation 8.5, one can deduce the

value of ∆ needed to find w in the reduced lattice:

∆ ≥ (T + 1)(T+u)/(2(u−1))2
1+

∑
µi,j−(u+T )

u−1

q(1.02)
(T+u)2

u−1

:= ∆th

In our experiments, the average value of `i for 1 ≤ i ≤ u is ˜̀ = 26, and thus T = u × ˜̀ on average.
Moreover, the average value of µij is 7 and so on average

∑
µij = 7× u× ˜̀. Hence, if we compute ∆th

for u = 3, . . . , 8, with these values, we obtain ∆th � 1, which does not help us to set this parameter. In
practice, we verify that ∆ = 1 allows us to recover the secret key. In Section 8.4, we vary the size of ∆
to see whether a slightly larger value affects the probability of success.

Too many small vectors. While running BKZ on B, we note that for some specific sets of parameters
the reduced basis contains some undesired short vectors, i.e., vectors that are shorter than w. This can
be explained by looking at two consecutive rows in the lattice basis given above, say the jth row and
the (j + 1)th row. For example, one can look at rows which correspond to the σi,j values but the
same argument is valid for the rows concerning the τj,i. From the definitions of the σ values we have
σi,j+1 = −2λi,j+1+1·sir1 = −2λi,j+1+1·( σi,j

−2λi,j+1 ). So σi,j+1 = 2λi,j+1−λi,j ·σi,j . Thus the linear combination
given by the (j + 1)th row minus 2λi,j+1−λi,j times the jth row gives a vector

(0 , · · · , 0 ,−2λi,j+1−λi,j+m−µi,j , 2m−µi,j+1 , 0 , · · · , 0). (8.6)

186



Algorithm 18 Merging algorithm
Input: vλ, a table of size n with the positions of non-zero digits in the trace sorted in increasing order
and n ≥ 1, a window size w.
Output: vλ′ , a table of size n′ ≤ n containing the merged λ values and table vµ of same size n′, with
the values of the window size µi.
1: i← 1
2: vλ′ ← empty array
3: vµ ← empty array
4: vλ′ .push_back(vλ.at(0))
5: while i < n do
6: dist← vλ.at(i)− vλ.at(i− 1)
7: if dist > w + 1 then
8: vµ.push_back(vλ.at(i− 1)− vλ′ .last() + w)
9: vλ′ .push_back(vλ.at(i))

10: i← i+ 1

11: vµ.push_back(vλ.at(n)− vλ′ .last() + w)
12: return (vλ′ , vµ)

Yet, this vector is expected to have smaller norm than w. Some experimental observations are detailed
in Section 8.4.

Differences with the lattice construction given in [FWC16]. Let B′ be the lattice basis con-
structed in [FWC16]. Our basis B is a rescaled version of B′ such that B = 2m∆B′. This rescaling allows
us to ensure that all the coefficients in our lattice basis are integer values. Note that [FWC16] have a
value δ in their construction which corresponds to 1/∆. In this work, we give a precise analysis of the
value of ∆, both theoretically and experimentally in Section 8.4, which is missing in [FWC16].

8.3 Improving the lattice attack
8.3.1 Reducing the lattice dimension: the merging technique
In [FWC16], the authors present another way to further reduce the lattice dimension, which they call
the merging technique. It aims at reducing the lattice dimension by reducing the number of non-zero
digits of k. The lattice dimension depends on the value T =

∑u
i=1 `i, and thus reducing T reduces the

dimension. For the understanding of the attack, it suffices to know that after merging, we obtain some
new values `′ corresponding to the new number of non-zero digits and λ′j the position of these digits for
1 ≤ j ≤ `′. After merging, one can rewrite

k = k̄ +

`′∑
j=1

d′j2
λ′j+1,

where the new d′j have a new window size which we denote µj , i.e., 0 ≤ d′j ≤ 2µj − 1.
We present our merging algorithm based on Algorithm 3 given in [FWC16]. Our algorithm modifies

directly the sequence {λj}`j=1, whereas [FWC16] work on the double-and-add chains. This helped us
avoid some implementation issues such as an index outrun present in Algorithm 3 [FWC16], line 7. To
facilitate the ease of reading of (our) Algorithm 18, we work with dynamic tables. Let us first recall
various known methods we use in the algorithm: push_back(e) inserts an element e at the end of the
table, at(i) outputs the element at index i, and last() returns the last element of the table. We consider
tables of integers indexed in [0;S − 1], where S is the size of the table.

A useful example of the merging technique is given in [FWC16]. From 3 to 8 signatures the ap-
proximate dimension of the lattices using the elimination and merging techniques are the following:
80, 110, 135, 160, 190 and 215. Each new lattice dimension is roughly 54% of the dimension of the lattice
before applying these techniques, for the same number of signatures. For instance, with 8 signatures

187



we would have a lattice of dimension 400 on average, far too large to be easily reduced. For the traces
we consider, after merging the mean of the `i is 26, the minimum being 17 and the maximum 37 with
a standard deviation of 3. One could further reduce the lattice dimension by preprocessing traces with
small `i. However, the standard deviation being small, the difference in the reduction times should not
be affected too much.

8.3.2 Preprocessing the traces
The two main pieces of information we can extract and use in our attack are first the number of non-zero
digits in the wNAF representation of the nonce k, denoted ` and the weight of each non-zero digit, denoted
µj for 1 ≤ j ≤ `. Let T be the set of traces we obtained from the side-channel leakage representing the
wNAF representation of the nonce k used while producing an ECDSA signature. We consider the subset

Sa = {t ∈ T |max
j
µj ≤ a, 1 ≤ j ≤ `}.

We choose to preselect traces in a subset Sa for small values of a. The idea behind this preprocessing
is to regulate the size of the coefficients in the lattice. Indeed, when selecting u traces for the attack,
by upper-bounding m = maxi,j µi,j for 2 ≤ i ≤ u, we force the coefficients to remain smaller than when
taking traces at random.

We work with a set T of 2000 traces such that for all traces 11 ≤ maxj µj ≤ 67. The proportion
of signatures corresponding to the different preprocessing subsets we consider in our experiments are:
2% for S11, 18% for S15 and 44% for S19. The effect of preprocessing on the total time is explained in
Section 8.4.

8.4 Performance analysis
Traces from the real world. We work with the elliptic curve secp256k1 but none of the techniques
introduced here are limited to this specific elliptic curve. We consider traces from a Flush+Reload attack,
executed through hyperthreading, as it can virtually recover the most amount of information. In practice,
measurements done during the cache attack depend on the noise in the execution environment, the threat
model and the target leaky implementation.

To the best of our knowledge, the only information we can recover are the positions of the non-zero
digits. We are not able to determine the sign or the value of the digits in the wNAF representation.
In [FWC16], the authors exploit the fact that the length of the binary string of k is fixed in implemen-
tations such as OpenSSL, and thus more information can be recovered by comparing this length to the
length of the double-and-add chain. In particular, they were able to recover the MSB of k, and in some
cases the sign of the second MSB. We do not consider this extra information as we want our analysis to
remain general.

We report calculations ran on error-free traces where we evaluate the total time necessary to recover
the secret key and the probability of success of the attack. Our experiments have two possible outputs:
either we reconstruct the secret key α and thus consider the experiment a success, or we do not recover
the secret key, and the experiment fails. In order to compute the success probability and the average
time of one reduction, we run 5000 experiments for some specific sets of parameters using either Sage’s
default BKZ implementation [The16] or a more recent implementation of the latest sieving strategies,
the General Sieve Kernel (G6K) [ADH+19]. The experiments were ran using the cluster Grid’5000 on a
single core of an Intel Xeon Gold 6130. The total time is the average time of a single reduction multiplied
by the number of trials necessary to recover the key. For a fixed number of signatures, we either optimize
the total time or the success probability. We report numbers in Tables 8.3, 8.4 when using BKZ. 5

Comments on G6K: We do not report the full experiments ran with G6K since using this implemen-
tation does not lead to the fastest total time of our attack: around 2 minutes using 8 signatures for BKZ
and at best 5 minutes for G6K.

5In [FWC16], the authors use an Intel Core i7-3770 CPU running at 3.40GHz on a single core. In order for the time
comparison to be meaningful, we ran experiments with a machine of comparable performance to estimate the timings of a
single reduction. As we obtained similar timings with an older machine than used in [FWC16], the variations we find when
comparing ourselves to them solely come from the lattice construction and the reduction algorithm being used rather than
hardware differences.

188



Number of Total Parameters Probability of
signatures time BKZ Preprocessing ∆ success (%)

3 39 hours 35 S11 ≈ 23 0.2
4 1 hour 17 25 S15 ≈ 23 0.5
5 8 min 20 25 S19 ≈ 23 6.5
6 3 min 55 20 Sall ≈ 23 7
7 2 min 43 20 Sall ≈ 23 17.5
8 2 min 25 20 Sall ≈ 23 29

Table 8.3: Fastest key recovery with respect to the number of signatures.

Number of Probability of Parameters Total
signatures success (%) BKZ Preprocessing ∆ time

3 0.2 35 S11 ≈ 23 39 hours
4 4 35 Sall ≈ 23 25 hours 28
5 20 35 Sall ≈ 23 2 hours 42
6 40 35 Sall ≈ 23 1 hour 04
7 45 35 Sall ≈ 23 2 hours 36
8 45 35 Sall ≈ 23 5 hours 02

Table 8.4: Highest probability of success with respect to the number of signatures.

However, G6K allows to reduce lattices with much higher block-sizes than BKZ. For comparable prob-
abilities of success, G6K is faster. Considering the highest probability achieved, on one hand, BKZ-35
leads to a probability of success of 45%, and a single reduction takes 133 minutes. On the other hand,
to reach around the same probability of success with G6K, we increase the block-size to 80, and a single
reduction is only around 45 minutes on average. This is an improvement by a factor of 3 in the reduction
time.

Only 3 signatures. Using ∆ ≈ 23 and no preprocessing, we recovered the secret key using 3 signatures
with BKZ-35 only once and three times with BKZ-40. When using pre-processing S11, BKZ-35 and
∆ ≈ 23, the probability of success went up to 0.2%. Since all the probabilities remain much less than 1%
an extensive analysis would have taken too long. Thus, in the rest of the section, the number of signatures
only varies between 4 and 8. However, we want to emphasize that it is precisely this detailed analysis
on a slightly higher number of signatures that allowed us to understand the impact of the parameters on
the performance of the attack and resulted in finding the right ones allowing to mount the attack with 3
signatures.

Varying the bitsize of ∆. In Figure 8.1, we analyze the total time of key recovery as a function of the
bitsize of ∆. We fix the block-size of BKZ to 25 and take traces without any preprocessing. We are able
to recover the secret key by setting ∆ = 1, which is the lowest theoretical value one can choose. However,
we observed a slight increase in the probability of success by taking a larger ∆. Without any surprise,
we note that the total time to recover the secret key increases with the bitsize of ∆ as the coefficients in
the lattice basis become larger.

Analyzing the effect of preprocessing. We analyze the influence of our preprocessing method on
the attack time. We fix BKZ block-size to 25. The effect of preprocessing is influenced by the bitsize of
∆ and we give here an analysis for ∆ ≈ 225 since the effect is more noticeable.

The effect of preprocessing is difficult to predict since its behavior varies depending on the parameters,
having both positive and negative effects. On the one hand, we reduce the size of all the coefficients in
the lattice, thus reducing the reduction time. On the other hand, we generate more potential small
vectors6 with norms smaller than the norm of w. For this reason, the probability of success of the attack
decreases, the vector w more likely to be a linear combination of vectors already in the reduced basis.

6In the sense of vectors exhibited in (8.6).

189



Figure 8.1: Analyzing the overall time to recover the secret key as a function of the bitsize of ∆. We
report the numbers BKZ-25 and no preprocessing. The optimal value for ∆ is around 23 except for u = 8
where it is 25.

For example, with 7 signatures we find on average w to be the third or fourth vector in the reduced basis
without preprocessing, whereas with S11 it is more likely to appear in position 40.

The positive effect of preprocessing is most noticeable for u = 4 and u = 5, as shown in Figure 8.2.
For instance, using S15 and u = 4 lowers the overall time by a factor up to 5.7. For u = 5, we gain a
factor close to 3 by using either S15 or S19. For u > 5, using preprocessed traces is less impactful. For
large ∆ such as ∆ ≈ 225, we still note some lower overall times when using S15 and S19, up to a factor
2. When the bitsize gets smaller, reducing the size of the coefficients in the lattice is less impacful.

Balancing the block-size of BKZ. Finally, we vary the block-size in the BKZ algorithm. We fix
∆ ≈ 23 and use no preprocessing. We plot the results in Figure 8.3 for 6 and 7 signatures. For other
values of u, the plot is very similar and we omit them in Figure 8.3. Without any surprise, we see that
as we increase the block-size, the probability of success increases, however the reduction time increases
significantly as well. This explains the results shown in Table 8.3 and Table 8.4: to reach the best
probability of success one needs to increase the block-size in BKZ (we did not try any block-size greater
than 40), but to get the fastest key recovery attack, the block-size is chosen between 20 and 25, except
for 3 signatures where the probability of success is too low with these parameters.

8.5 Error resilience analysis
It is not unexpected to have errors in the traces collected during side-channel attacks. Obtaining error-free
traces requires some amount of work on the signal processing side. Prior to [DDME+18], the presence of
errors in traces was either ignored or preprocessing was done on the traces until an error-free sample was
found, see [GPP+16, ARAM17]. In [DDME+18], it is shown the lattice attack still successfully recovers
the secret key even when traces contain errors. An error in the setup given in [DDME+18] corresponds
to an incorrect bound on the size of the values being collected. In our setup, a trace without errors
corresponds to a trace where every single coefficient in the wNAF representation of k has been identified
correctly as either non-zero or not. The probability of having an error in our setup is thus much higher.
Side-channel attacks without any errors are very rare. Both [vSY15] and [DDME+18] give some analysis
of the attacks Flush+Reload and Prime+Probe in real life scenarios.

In [FWC16], the results presented in the paper assume the Flush+Reload is implemented perfectly,
without any error. In particular, to obtain 4 perfect traces and be able to run their experiment and find

190



Figure 8.2: Overall time to recover the secret key as a function of the preprocessing subset for 4 and 5
traces. The other parameters are fixed: ∆ ≈ 225 and BKZ-25.

Number of Probability of success (%)
signatures 0 error 5 errors 10 errors 20 errors 30 errors

4 0.28 � 1 0 0 0
5 4.58 0.86 0.18 � 1 0
6 19.52 5.26 1.26 0.14 � 1
7 33.54 10.82 3.42 0.32 � 1
8 35.14 13.26 4.70 0.58 � 1

Table 8.5: Error analysis using BKZ-25, ∆ ≈ 23 and Sall.

the key, one would need to have in average 8 traces from Flush+Reload – the probability to conduct to
a perfect reading of the traces being 56 % as pointed out in [vSY15]. In our work, we show that it is
possible to recover the secret key using only 4, even erroneous, traces. However, the probability of success
is very low.

Recall that an error in our case corresponds to a flipped digit in the trace of k. Table 8.5 shows the
attack success probability in the presence of errors. We ran BKZ-25 and ∆ ≈ 23 with traces taken from
Sall. We average over 5000 experiments. We write � 1 when the attack succeeded less than five times
over 5000 experiments, thus making it difficult to evaluate the probability of success.

The attack works up to a resilience to 2% of errors. Indeed, for u = 6, we recovered the secret key
with 30 errors, i.e., 30 flipped digits over 6× 257 digits.

Different types of errors. There exists two possible types of errors. In the first case, a coefficient
which is zero is evaluated as a non-zero coefficient. In theory, this only adds a new variable to the system,
i.e., the number ` of non-zero coefficients is overestimated. This does not affect the probability of success
much. Indeed, we just have an overly-constrained system. We can see in Figure 8.4 that the probability
of success of the attack indeed decreases slowly as we add errors of this form. With errors only of this
form, we were able to recover the secret key up to nearly 4% of errors, (for instance with u = 6, using
BKZ-35). The other type of errors consists of a non-zero coefficient which is misread as a zero coefficient.
In this case, we lose information necessary for the key recovery and thus this type of error affects the
probability of success far more importantly as can also be seen in Figure 8.4. In this setup, we were not
able to recover the secret key when more than 3 errors of this type appear in the set of traces considered.

191



Figure 8.3: Analyzing the number of trials to recover the secret key and the reduction time of the lattice
as a function of the block-size of BKZ. We consider the cases where u = 6 and u = 7. The dotted lines
correspond to the number of trials, and the continued lines to the reduction time in seconds.

Figure 8.4: Probability of success for key recovery with various types of errors when using u = 8, BKZ-25,
∆ ≈ 23, and no preprocessing.

Strategy. If the signal processing method is hesitant between a non-zero digit or 0, we would recommend
to favor putting a non-zero instead of 0 to increase the chance of having an error of type 0→ non-zero,
for which the attack is a lot more tolerant.

8.5.1 Tables for error analysis
We analyze the effect of two possible kind of errors on the probability of success of our attack, using
BKZ-25, ∆ ≈ 23 and no preprocessing. We average over 5000 experiments. We write � 1 when the
attack succeeded less than five times over 5000 experiments.

192



Number of Probability of success (%)
signatures 0 errors 1 error 5 errors 10 errors 20 errors 30 errors 40 errors 50 errors 60 errors

4 0.28 0.18 0.10 � 1 0 0 0 0 0
5 4.58 3.82 2.70 1.06 0.32 � 1 0 0 0
6 19.52 10.79 13.88 7.90 2.94 0.86 0.36 0.10 � 1
7 33.54 31.06 26.04 18.36 9.24 4.54 ? 1.02 0.50
8 35.14 34.92 31.94 25.50 16.70 7.96 4.94 2.48 1.22

Table 8.6: Error 0→ 1 analysis using BKZ-25, ∆ ≈ 23 and Sall.

Number of Probability of success (%)
signatures 0 errors 1 error 2 errors 3 errors

4 0.28 0 0 0
5 4.58 0.36 � 1 0
6 19.52 2.70 0.36 � 1
7 33.54 5.54 1.00 0.12
8 35.14 8.20 1.36 0.30

Table 8.7: Error 1→ 0 analysis using BKZ-25, ∆ ≈ 23 and Sall.

When considering many errors, the probability of success can be increased by augmenting the block-
size in the BKZ algorithm, as can be seen in Table 8.8.

Number of Probability of success (%)
signatures 30 errors 40 errors 50 errors 60 errors

25 30 35 40 25 30 35 40 25 30 35 40 25 30 35 40
5 � 1 0.24 0.35 0.75 0 � 1 � 1 0.42 0 0 0 0 0 0 0 0
6 0.86 2.48 3.58 3.97 0.36 0.90 1.18 2.28 0.10 0.36 0.58 0.94 � 1 � 1 0.12 0.12
7 4.54 6.44 7.32 8.73 1.80 3.54 3.48 4.58 1.02 1.26 1.84 3.26 0.50 0.62 1.20 1.43
8 7.96 10.46 11.78 10.98 4.94 6.12 6.73 7.12 2.48 3.26 3.78 4.64 1.22 1.84 1.89 2.18

Table 8.8: Errors 0→ 1 analysis with ∆ ≈ 23, Sall and increasing block-size.

8.6 Countermeasures
In the last decades, most implementations of ECDSA have been the target of microarchitectural attacks,
and thus existing implementations have either been replaced by more robust algorithms, or layers of
security have been added. The work presented in this chapter does not fundamentally change the nature
of these attacks but their performance. Thus known countermeasures for side-channel attacks still apply.
For example, one way of minimizing leakage from the scalar multiplication is to use the Montgomery
ladder scalar-by-point multiplication [Mon87], much more resilient to side-channel attacks due to the
regularity of the operations. However, this does not entirely remove the risk of leakage [YB14]. Additional
countermeasures are necessary.

When looking at common countermeasures, many implementations use blinding or masking tech-
niques [OST06], for example in BouncyCastle implementation of ECDSA. The former consists in blind-
ing the data before doing any operations, and masking techniques randomize all the data-dependent
operations by applying random transformations, thus making any leakage unexploitable.

This work as well as any improvement on the lattice techniques that use traces from the side channel
show that any leakage can be exploited. Hence, to prevent known attacks or even future ones, having
implementations with zero leakage such as constant-time implementations should be the main goal.

193



194



Conclusion

The contributions presented in this thesis can be subdivided into two main topics: the evaluation of
the hardness of the discrete logarithm problem over finite fields of medium and large characteristic
and the analysis and use of methods to recover cryptographic keys from side-channel leakage due to
implementation vulnerabilities. We summarize here the main contributions and give some insight on
open questions and future directions.

On the hardness of the discrete logarithm problem
In this thesis, we focused on the discrete logarithm problem and in particular on the efficient algorithms
known to solve it for specific finite fields.

We first considered the finite fields located at the boundary between small and medium characteristic.
This area was particularly interesting to study as the complexities of the numerous algorithms that are
concerned were non-existent in the literature. More importantly, it allowed us to give some insight on
the security of pairing-based protocols. We were able to identify some special characteristics that are
asymptotically as secure as characteristics of the same size but without any special form. This is a
compelling fact as special characteristics were originally used to produce pairing-friendly elliptic curves.
However, the threats of DLP attacks on the finite field side with SNFS have brought forth concerns about
these special characteristics and the latter were then often avoided as they were thought to weaken the
protocol. These special characteristics improve on the efficiency of the scheme and we show that in some
cases they can be used safely.

Moreover, our asymptotic study aimed at complementing the practical security estimates given
in [Gui20] for fixed security levels up to 192. The fact that some statements diverge, such as the afore-
mentioned case of special characteristics, points to the fact that cryptanalists have not yet reached a
steady state when considering a 192-bit level of security. More work for cryptographic relevant sizes, such
as 256-bit of security level, is thus required in order to be confident on the security of the parameters
proposed.

A first step towards having better security estimates would be to run large scale experiments with
variants of the Number Field Sieve. This direction was partly achieved in this thesis where we present
a first implementation of TNFS and a 521-bit record computation. However, more work on optimizing
the many parameters involved would potentially lead to records using TNFS in much larger finite fields.
We have also mentioned in Chapter 5 some potential speed-ups in both the relation collection step and
the linear algebra step due to interactions between Galois actions and Schirokauer maps. Optimizing
the parameters and taking into account Galois actions is left for future work. Establishing a new record
computation for a large finite field is also left for future work.

Another research direction would be to explore the possibility of implementing another variant of
NFS, the Multiple Number Field Sieve algorithm. Indeed, in theory, the use of multiple number fields
significantly decreases the asymptotic complexity of NFS for finite fields we are concerned about. In
practice, it is not clear whether this would allow to improve on actual computations. A potential im-
plementation of MNFS would first require answering the following questions: how many number fields
should be considered? What polynomial selection should be used? Moreover, it is possible that some
steps of the algorithm must be adapted for this variant similarly as how sieving was modified for TNFS.
In particular, the descent phase is likely to change for MNFS. Finally, having a practical MNFS algorithm
would also require a large amount of implementation work similar to what has been done for TNFS.

195



In another direction, this thesis has not covered the Quasi-Polynomial algorithms used for finite
fields of small characteristic. It is natural to wonder whether techniques from these algorithms can be
translated to the medium and large case. A direct application of the main ideas of QP algorithms cannot
be translated to medium and large characteristics since the complexity of these QP algorithms is in Lpn(a)
when p = Lpn(a). Hence, as soon as a > 1/3, their complexity will exceed what we already have with
NFS and its variants. However, one can still wonder whether some ideas can still be translated such as
the use of function fields instead of number fields. Can we hope to go below an Lpn(1/3) complexity for
finite fields of medium and large characteristic?

On key recovery methods from partial information
The second topic of our thesis concerned partial key recovery techniques using information from side-
channel leakage. We first presented an overview of the most common techniques to recover a secret when
partial information is first obtained from a side-channel attack. These techniques vary depending on
the protocol considered and the nature of the information collected. Some open questions still persist
concerning these techniques and further improvements to these methods should be possible.

First, recovering an RSA secret key when many non-consecutive chunks of bits of a factor of the RSA
modulus need to recovered is still an open problem. When many non-consecutive bits of secret values
are known or need to be recovered, the main method used is a branch and prune algorithm. However,
when too many chunks are considered, the resulting tree has exponentially many solutions and thus the
method is inefficient. In order to improve on this method and hence be able to recover RSA secrets with
many unknown chunks of bits, additional information should be considered in order to efficiently prune
the tree.

Another interesting and commonly used method is the Hidden Number Problem. The latter can be
solved using two different techniques: via lattices or via Fourier analysis. The first method is usually
favored as it requires less signatures, which is convenient for practical attacks. On the other hand,
Fourier’s analysis method can deal with as little as one known most significant bit from signature nonces.
Combining these two methods to obtain “the best of both worlds” is an interesting research direction. A
recent progress on the Hidden Number Problem can be found in [AH20].

Finally, we mention that recovering Diffie-Hellman secret key with multiple chunks of unknown bits
is also still an open problem. Exploring multi-dimensional variants of the discrete logarithm problem
seems like the right direction but so far has not proven to be practical due to boundary issues for the
multi-dimensional pseudorandom walks.

In both attacks presented in Chapter 7 and Chapter 8, lattice techniques are used to recover the
secret. In particular, in Chapter 8, we improve on the lattice construction used in the Extended Hidden
Number Problem to minimize the number of signatures required for the algorithm to work, and also
minimize the overall attack time. Further improving these attacks can thus also come from investigating
more thoroughly the lattice constructions involved and the inputs to the lattice.

For example, we used a pre-processing technique in Chapter 8 which allowed us to save significant time
in our attack. Similar pre-processing methods could be used for other techniques. Moreover, correctly
balancing the coefficients in the lattices to efficiently find the desired short vector could also be improved
and would consequently improve the success probability of these lattice attacks.

Finally, most of the attacks we concerned ourselves with resulted from a leakage coming from a fast
modular exponentiation computation. Other operations in the execution of an algorithm could leak
information. For example, in [CAPGATB19], the binary GCD step used during RSA key generation
leaks information leading to a full RSA private key recovery. Even if real-world libraries now require
their cryptographic software to be constant-time, it is unreasonable to believe that all protocols are safe
from operations leaking information. Identifying these vulnerable operations and pieces of code that
result in leaked bits and mounting full attacks to recover secret keys should remain an active field of
research motivated by the wide use of these protocols in the real world.

196



Bibliography

[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a pro-
grammable superconducting processor. Nature, 574:505–510, 2019.

[ABF+16] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval Yarom.
Amplifying Side Channels through Performance Degradation. In Proceedings of the 32nd
Annual Conference on Computer Security Applications, ACSAC’16, pages 422–435, New
York, NY, USA, 2016. Association for Computing Machinery.

[ABF+20] Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé, and
Weiqiang Wen. Faster enumeration-based lattice reduction: Root hermite factor k1/(2k)

time kk/8+o(k). In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 186–212. Springer, Heidelberg, August 2020.

[ACMCC+18] Gora Adj, Isaac Canales-Martínez, Nareli Cruz-Cortés, Alfred Menezes, Thomaz Oliveira,
Luis Rivera-Zamarripa, and Francisco Rodríguez-Henríquez. Computing Discrete Loga-
rithms in Cryptographically-interesting Characteristic-three Finite Fields. Advances in
Mathematics of Communications, 12:741–759, 2018.

[AD97] Miklós Ajtai and Cynthia Dwork. A Public-Key Cryptosystem with Worst-Case/Average-
Case Equivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC’97, pages 284–293, New York, NY, USA, 1997. Association
for Computing Machinery.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W.
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in lattice
reduction. Cryptology ePrint Archive, Report 2019/089, 2019. .

[Adl79] Leonard M. Adleman. A Subexponential Algorithm for the Discrete Logarithm Prob-
lem with Applications to Cryptography. In 20th Annual Symposium on Foundations of
Computer Science (FOCS’79), pages 55–60. IEEE Computer Society Press, 1979.

[Adl94] Leonard M. Adleman. The Function Field Sieve. In Leonard M. Adleman and Ming-Deh
Huang, editors, ANTS-I, LNCS, pages 108–121. Springer, 1994.

[AH20] Martin R. Albrecht and Nadia Heninger. On Bounded Distance Decoding with Predicate:
Breaking the "Lattice Barrier" for the Hidden Number Problem. Cryptology ePrint
Archive, Report 2020/1540, 2020. .

[Ajt96] Miklós Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract). In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC’96, pages 99–108, New York, NY, USA, 1996. Association for Computing Machin-
ery.

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-Hard for Randomized Reduc-
tions (Extended Abstract). In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC’98, pages 10–19, New York, NY, USA, 1998. Association
for Computing Machinery.

197



[Ajt03] Miklós Ajtai. The Worst-case Behavior of Schnorr’s algorithm Approximating the Short-
est Nonzero Vector in a Lattice. Conference Proceedings of the Annual ACM Symposium
on Theory of Computing, pages 396–406, 2003.

[AKM+15] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and
Hovav Shacham. On Subnormal Floating Point and Abnormal Timing. In IEEE Sym-
posium on Security and Privacy, pages 623–639, 2015.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A Sieve Algorithm for the Short-
est Lattice Vector Problem. New York, NY, USA, 2001. Association for Computing
Machinery.

[AKS02] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. Sampling Short Lattice Vectors
and the Closest Lattice Vector Problem. In Proceedings 17th IEEE Annual Conference
on Computational Complexity, pages 53–57, 2002.

[AMG+15] Ittai Anati, Frank McKeen, Shay Gueron, Haitao Huang, Simon Johnson, Rebekah Leslie-
Hurd, Harish Patil, Carlos Rozas, and Hisham Shafi. Intel Software Guard Extensions
(Intel SGX). Tutorial Slides presented at ISCA, June 2015.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and Yuval
Yarom. LadderLeak: Breaking ECDSA with less than one bit of nonce leakage. In ACM
CCS 20, pages 225–242. ACM Press, 2020.

[ARAM17] Jiji Angel, R. Rahul, C. Ashokkumar, and Bernard Menezes. DSA signing key recovery
with noisy side channels and variable error rates. In Arpita Patra and Nigel P. Smart,
editors, INDOCRYPT 2017, volume 10698 of LNCS, pages 147–165. Springer, Heidelberg,
December 2017.

[AS08] Onur Aciiçmez and Werner Schindler. A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL. In Tal Malkin, editor,
CT-RSA 2008, volume 4964 of LNCS, pages 256–273. Springer, Heidelberg, April 2008.

[ASK07] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache based remote timing
attack on the AES. In Masayuki Abe, editor, CT-RSA 2007, volume 4377 of LNCS,
pages 271–286. Springer, Heidelberg, February 2007.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-Size Dynamic k -TAA. In SCN, pages
111–125, 2006.

[Bab85] László Babai. On Lovász’ Lattice Reduction and the Nearest Lattice Point Problem
(Shortened Version). In STACS, 1985.

[Bar13] Razvan Barbulescu. Algorithmes de logarithmes discrets dans les corps finis. PhD thesis,
2013.

[BBG+17] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot Bruinderink, Nadia
Heninger, Tanja Lange, Christine van Vredendaal, and Yuval Yarom. Sliding right into
disaster: Left-to-right sliding windows leak. In Wieland Fischer and Naofumi Homma, ed-
itors, CHES 2017, volume 10529 of LNCS, pages 555–576. Springer, Heidelberg, Septem-
ber 2017.

[BBKZ16] Shi Bai, Cyril Bouvier, Alexander Kruppa, and Paul Zimmermann. Better polynomials
for GNFS. Mathematics of Computation, 85(298):861–873, 2016.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidel-
berg, August 2004.

198



[BCC+13] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia Heninger,
Tanja Lange, and Nicko van Someren. Factoring RSA keys from certified smart cards:
Coppersmith in the wild. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 341–360. Springer, Heidelberg, December 2013.

[BCD+17] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari
Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi. DR. SGX: Hardening SGX En-
claves against Cache Attacks with Data Location Randomization. arXiv preprint
arXiv:1709.09917, 2017.

[BCD+19] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari
Kostiainen, and Ahmad-Reza Sadeghi. DR.SGX: Automated and Adjustable Side-
Channel Protection for SGX Using Data Location Randomization. In Proceedings of
the 35th Annual Computer Security Applications Conference, ACSAC’19, pages 788–800,
New York, NY, USA, 2019. Association for Computing Machinery.

[BDF98] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on RSA given a small fraction
of the private key bits. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT’98, volume
1514 of LNCS, pages 25–34. Springer, Heidelberg, October 1998.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New Directions in Nearest
Neighbor Searching with Applications to Lattice Sieving. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’16, pages 10–24,
USA, 2016. Society for Industrial and Applied Mathematics.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. Found at
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[Ber08] Daniel J. Bernstein. Reducing lattice bases to find small-height values of univariate
polynomials. Surveys in Algorithmic Number Theory, 44:421–446, 2008.

[Ber15] Elwyn R. Berlekamp. Algebraic Coding Theory - Revised Edition. World Scientific Pub-
lishing Co., Inc., USA, 2015.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,
Heidelberg, August 2001.

[BGG+20] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé,
and Paul Zimmermann. Comparing the difficulty of factorization and discrete loga-
rithm: A 240-digit experiment. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 62–91. Springer, Heidelberg,
August 2020.

[BGGM15] Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and François Morain. Improving
NFS for the discrete logarithm problem in non-prime finite fields. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
129–155. Springer, Heidelberg, April 2015.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search. Cryptology ePrint
Archive, Report 2015/522, 2015. .

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic
quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 1–16. Springer, Heidelberg, May 2014.

199

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf


[BGK15] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower number field
sieve. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume
9453 of LNCS, pages 31–55. Springer, Heidelberg, November / December 2015.

[BGS06] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert. Mitigating Cache/Timing Based
Side-channels in AES and RSA Software Implementations. RSA Conference 2006 session
DEV-203, February 2006.

[BL10] Yuval Bistritz and Alexander Lifshitz. Bounds for resultants of univariate and bivariate
polynomials. Linear Algebra and its Applications, 432:1995–2005, 2010.

[BL11] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID from Bilinear Pairing for Hardware
Authentication and Attestation. IJIPSI, 1(1):3–33, 2011.

[BL13] Daniel J. Bernstein and Tanja Lange. Two Grumpy Giants and a Baby. In E.W. Howe and
K.S. Kedlaya, editors, ANTS X (Proceedings of the Tenth Algorithmic Number Theory
Symposium, San Diego, California, July 9-13, 2012), The Open Book Series, pages 87–
111, United States, 2013. Mathematical Sciences Publishers.

[BL14] Daniel J. Bernstein and Tanja Lange. Batch NFS. Cryptology ePrint Archive, Report
2014/921, 2014.

[BL16] Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using cross-polytope
LSH. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 16, volume 9646 of LNCS, pages 3–23. Springer, Heidelberg, April
2016.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 1–12. Springer, Heidelberg, August 1998.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer,
Heidelberg, December 2001.

[BM03] Johannes Blömer and Alexander May. New partial key exposure attacks on RSA. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 27–43. Springer, Heidelberg,
August 2003.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks Are Practical.
In WOOT, 2017.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symposium (ANTS), volume 1423 of LNCS. Springer, Heidelberg, 1998. Invited paper.

[Boo51] Andrew D. Booth. A Signed Binary Mutiplication Technique. Q. J. Mech. Appl. Math.,
4(2):236–240, January 1951.

[Bou15] Cyril Bouvier. Algorithmes pour la factorisation d’entiers et le calcul de logarithme
discret. Theses, Université de Lorraine, June 2015.

[BP14] Razvan Barbulescu and Cécile Pierrot. The Multiple Number Field Sieve for Medium
and High Characteristic Finite Fields. LMS Journal of Computation and Mathematics,
17:230–246, 2014.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, EUROCRYPT’94, volume 950 of LNCS, pages 92–111. Springer, Heidelberg, May
1995.

200



[BS84] László Babai and Endre Szemeredi. On The Complexity Of Matrix Group Problems I.
In 25th Annual Symposium on Foundations of Computer Science, 1984, pages 229–240,
1984.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are Still Practical. In
ESORICS, pages 355–371, 2011.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most signifi-
cant bits of secret keys in Diffie-Hellman and related schemes. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 129–142. Springer, Heidelberg, August 1996.

[BvSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “ooh aah... just
a little bit”: A small amount of side channel can go a long way. In Lejla Batina and
Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages 75–92. Springer,
Heidelberg, September 2014.

[BW14] David Bernhard and Bogdan Warinschi. Cryptographic Voting — A Gentle Introduction,
pages 167–211. Springer International Publishing, Cham, 2014.

[cad] The CADO-NFS Development Team. CADO-NFS, An Implementation of the Number
Field Sieve Algorithm. Found at http://cado-nfs.gforge.inria.fr. Development Version.

[CAPGATB19] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and
Billy Bob Brumley. Cache-Timing Attacks on RSA Key Generation. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2019(4):213–242, Aug. 2019.

[CC03] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap Diffie-
Hellman groups. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages
18–30. Springer, Heidelberg, January 2003.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086, 2016. .

[CEP83] Earl Rodney Canfield, Paul Erdős, and Carl Pomerance. On a Problem of Oppenheim
concerning “Factorisation Numerorum”. Journal of number theory, 17:1–28, 1983.

[CKP+19] Shaanan Cohney, Andrew Kwong, Shachar Paz, Daniel Genkin, Nadia Heninger, Eyal
Ronen, and Yuval Yarom. Pseudorandom black swans: Cache attacks on CTR_DRBG.
Cryptology ePrint Archive, Report 2019/996, 2019. .

[Coh12] Henri Cohen. Advanced Topics in Computational Number Theory. Graduate Texts in
Mathematics. Springer New York, 2012.

[Cop84] Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
Trans. Information Theory, 30:587–594, 1984.

[Cop93] Don Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, March 1993.

[Cop94] Don Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiede-
mann algorithm. Mathematics of Computation, 62:333–350, 1994.

[Cop96a] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with
high bits known. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS,
pages 178–189. Springer, Heidelberg, May 1996.

[Cop96b] Don Coppersmith. Finding a small root of a univariate modular equation. In Ueli M.
Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 155–165. Springer, Hei-
delberg, May 1996.

201

http://cado-nfs.gforge.inria.fr


[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups
(extended abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 410–424. Springer, Heidelberg, August 1997.

[CZRZ17] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. Detecting
Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu. In AsiaCCS, pages
7–18. ACM, 2017.

[DDME+18] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger,
Ahmad Moghimi, and Yuval Yarom. CacheQuote: Efficiently Recovering Long-term
Secrets of SGX EPID via Cache Attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(2):171–191, May 2018.

[DGP20] Gabrielle De Micheli, Pierrick Gaudry, and Cécile Pierrot. Asymptotic complexities of
discrete logarithm algorithms in pairing-relevant finite fields. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
32–61. Springer, Heidelberg, August 2020.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[DHMP13] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using Bleichen-
bacher’s solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of LNCS,
pages 435–452. Springer, Heidelberg, August 2013.

[Dic30] Karl Dickman. On the Frequency of Numbers containing Prime Factors of a Certain
Relative Magnitude. Arkiv för matematik, astronomi och fysik, 1930.

[DKTW19] Jintai Ding, Seungki Kim, Tsuyoshi Takagi, and Yuntao Wang. LLL and stochastic
sandpile models. Cryptology ePrint Archive, Report 2019/1009, 2019. .

[DPP20] Gabrielle De Micheli, Rémi Piau, and Cécile Pierrot. A tale of three signatures: Practical
attack of ECDSA with wNAF. In Abderrahmane Nitaj and Amr M. Youssef, editors,
AFRICACRYPT 20, volume 12174 of LNCS, pages 361–381. Springer, Heidelberg, July
2020.

[DSvW21] Léo Ducas, Marc Stevens, and Wessel van Woerden. Advanced Lattice Sieving on GPUs,
with Tensor Cores. Cryptology ePrint Archive, Report 2021/141, 2021.

[Duc18] Léo Ducas. Shortest vector from lattice sieving: A few dimensions for free. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 125–145. Springer, Heidelberg, April / May 2018.

[EL85] Wim Van Eck and Neher Laborato. Electromagnetic radiation from video display units:
An eavesdropping risk? Computers and Security, 4:269–286, 1985.

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

[FGHT17] Joshua Fried, Pierrick Gaudry, Nadia Heninger, and Emmanuel Thomé. A kilobit hidden
SNFS discrete logarithm computation. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 202–231. Springer,
Heidelberg, April / May 2017.

[FH08] Julie Ferrigno and Martin Hlavac. When AES blinks: Introducing optical side channel.
Information Security, IET, 2:94 – 98, 10 2008.

202



[FK05] Jens Franke and Thorsten Kleinjung. Continued Fractions and Lattice Sieving. Special-
Purpose Hardware for Attacking Cryptographic Systems–SHARCS, page 40, 2005.

[FP85] Ulrich Fincke and Michael Pohst. Improved Methods for Calculating Vectors of Short
Length in a Lattice. Mathematics of Computation, 1985.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A Taxonomy of Pairing-Friendly Elliptic
Curves. J. Cryptol., 23(2):224–280, April 2010.

[FWC16] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL implementation of
ECDSA with a few signatures. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1505–1515.
ACM Press, October 2016.

[Gar59] Harvey L. Garner. The residue number system. IRE Trans. Electron. Computers, EC-
8(2):140–147, Jun 1959.

[GB17] Cesar Pereida García and Billy Bob Brumley. Constant-time callees with variable-time
callers. In Engin Kirda and Thomas Ristenpart, editors, USENIX Security 2017, pages
83–98. USENIX Association, August 2017.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games – Bringing Access-
Based Cache Attacks on AES to Practice. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy, SP11, pages 490–505, USA, 2011. IEEE Computer Society.

[GBY16] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. “Make sure DSA signing
exponentiations really are constant-time”. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages
1639–1650. ACM Press, October 2016.

[GGM17] Laurent Grémy, Aurore Guillevic, and François Morain. Breaking DLP in GF (p5) using
3-dimensional sieving. July 2017.

[GGMT17] Laurent Grémy, Aurore Guillevic, François Morain, and Emmanuel Thomé. Computing
discrete logarithms in Fp6 . In Carlisle Adams and Jan Camenisch, editors, SAC 2017,
volume 10719 of LNCS, pages 85–105. Springer, Heidelberg, August 2017.

[GGO+09] Vinodh Gopal, James Guilford, Erdinc Ozturk, Wajdi Feghali, Gil Wolrich, and Mar-
tin Dixon. Fast and Constant-Time Implementation of Modular Exponentiation. In
Embedded Systems and Communications Security, September 2009.

[GKL+20] Robert Granger, Thorsten Kleinjung, Arjen K. Lenstra, Benjamin Wesolowski, and Jens
Zumbragel. Computation of a 30750-bit binary field discrete logarithm. Cryptology
ePrint Archive, Report 2020/965, 2020. .

[GKZ14] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ‘128-bit secure’
supersingular binary curves - (or how to solve discrete logarithms in F24·1223 and F212·367).
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 126–145. Springer, Heidelberg, August 2014.

[GKZ18] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Indiscreet logarithms in finite
fields of small characteristic. Advances in Mathematics of Communications, 12:263–286,
2018.

[GM03] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points. Forum
Mathematicum, 15:165–189, 01 2003.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript. In DIMVA, pages 300–321, 2016.

203



[GMSS99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approximat-
ing Shortest Lattice Vectors is Not Harder than Approximating Closet Lattice Vectors.
Inf. Process. Lett., 71(2):55–61, July 1999.

[GMT16] Aurore Guillevic, François Morain, and Emmanuel Thomé. Solving discrete logarithms
on a 170-bit MNT curve by pairing reduction. In Roberto Avanzi and Howard M. Heys,
editors, SAC 2016, volume 10532 of LNCS, pages 559–578. Springer, Heidelberg, August
2016.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+flush:
A fast and stealthy cache attack. In Proceedings of the 13th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment - Volume 9721,
DIMVA 2016, pages 279–299, Berlin, Heidelberg, 2016. Springer-Verlag.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, Heidelberg,
April 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme
pruning. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
257–278. Springer, Heidelberg, May / June 2010.

[Gor93] Daniel Gordon. Discrete Logarithms in GF (P ) Using the Number Field Sieve. SIAM
Journal on Discrete Mathematics, 6:124–138, 1993.

[Gor98] Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms, 27(1):129–
146, April 1998.

[GPP+16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.
ECDSA key extraction from mobile devices via nonintrusive physical side channels. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 1626–1638. ACM Press, October 2016.

[Gré16] Laurent Grémy. Computations of Discrete Logarithms. Found at https://dldb.loria.fr,
2016.

[Gré18] Laurent Grémy. Higher dimensional sieving for the number field sieve algorithms. In
ANTS 2018 - Thirteenth Algorithmic Number Theory Symposium, pages 1–16, Madison,
United States, July 2018. University of Wisconsin.

[GS21] Aurore Guillevic and Shashank Singh. On the alpha value of polynomials in the Tower
Number Field Sieve Algorithm. Mathematical Cryptology, 1(1), Feb. 2021.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Au-
tomating attacks on inclusive last-level caches. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 897–912. USENIX Association, August 2015.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth
acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 444–461. Springer, Heidelberg, August 2014.

[Gui] Aurore Guillevic. Pairing-friendly curves. Blogpost found at
https://members.loria.fr/AGuillevic/pairing-friendly-curves.

[Gui19] Aurore Guillevic. Faster individual discrete logarithms in finite fields of composite ex-
tension degree. Mathematics of Computation, 88(317):1273–1301, January 2019.

204

https://dldb.loria.fr
https://members.loria.fr/AGuillevic/pairing-friendly-curves


[Gui20] Aurore Guillevic. A short-list of pairing-friendly curves resistant to special TNFS at the
128-bit security level. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vas-
silis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 535–564. Springer,
Heidelberg, May 2020.

[GWZ17] Steven D. Galbraith, Ping Wang, and Fangguo Zhang. Computing Elliptic Curve Discrete
Logarithms with Improved Baby-step Giant-step Algorithm. Advances in Mathematics
of Communications, 11:453, 2017.

[GZES17] Berk Gülmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar. PerfWeb: How
to Violate Web Privacy with Hardware Performance Events. In ESORICS (2), pages
80–97, 2017.

[HG97] Nicholas Howgrave-Graham. Finding small roots of univariate modular equations re-
visited. In Michael Darnell, editor, Crytography and Coding, pages 131–142, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[HG98] Nicholas A Howgrave-Graham. Computational Mathematics Inspired by RSA. PhD
thesis, University of Bath, 1998.

[HG01] Nick Howgrave-Graham. Approximate integer common divisors. In International Cryp-
tography and Lattices Conference, pages 51–66. Springer, 2001.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and time-memory
trade-offs for tuple lattice sieving. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 407–436. Springer, Heidelberg, March
2018.

[HM08] Mathias Herrmann and Alexander May. Solving linear equations modulo divisors: On
factoring given any bits. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of
LNCS, pages 406–424. Springer, Heidelberg, December 2008.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-based Public
Key Cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–
288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[HPS11a] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the Shortest and
Closest Lattice Vector Problems. In Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing
Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding and Cryp-
tology, pages 159–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[HPS11b] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algo-
rithms using dynamical systems. In Phillip Rogaway, editor, CRYPTO 2011, volume
6841 of LNCS, pages 447–464. Springer, Heidelberg, August 2011.

[HR07] Martin Hlavác and Tomás Rosa. Extended hidden number problem and its cryptanalytic
applications. In Eli Biham and Amr M. Youssef, editors, SAC 2006, volume 4356 of
LNCS, pages 114–133. Springer, Heidelberg, August 2007.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of kannan’s shortest lattice
vector algorithm. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS,
pages 170–186. Springer, Heidelberg, August 2007.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from random key
bits. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 1–17. Springer,
Heidelberg, August 2009.

[HS14] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and heating fault
attacks. Cryptology ePrint Archive, Report 2014/190, 2014. .

205



[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In Paul C. van Oorschot, editor,
USENIX Security 2008, pages 45–60. USENIX Association, July / August 2008.

[IAES15] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing - and Its Application to
AES. In IEEE Symposium on Security and Privacy, pages 591–604, 2015.

[IEE00] IEEE. Minutes from the IEEE P1363 Working Group for Public-Key Cryptography
Standards, November 2000.

[IGI+15] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk
Sunar. Seriously, get off my cloud! Cross-VM RSA key recovery in a public cloud.
Cryptology ePrint Archive, Report 2015/898, 2015. .

[IGI+16] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk
Sunar. Cache Attacks Enable Bulk Key Recovery on the Cloud. In CHES, pages 368–
388, 2016.

[Int09] International Organization for Standardization. Information Technology - Security Tech-
niques – Cryptographic techniques based on elliptic curves. Part 5: Elliptic curve gener-
ation, 2009.

[JL03] Antoine Joux and Reynald Lercier. Improvements to the general number field sieve
for discrete logarithms in prime fields. a comparison with the gaussian integer method.
Mathematics of Computation, 72:953–967, 2003.

[JL06] Antoine Joux and Reynald Lercier. The function field sieve in the medium prime case.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 254–270.
Springer, Heidelberg, May / June 2006.

[JLSV06] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Vercauteren. The number
field sieve in the medium prime case. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 326–344. Springer, Heidelberg, August 2006.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic Curve Digital Signature
Algorithm (ECDSA). International Journal of Information Security, 1(1):36–63, 2001.

[Jou13] Antoine Joux. Faster index calculus for the medium prime case application to 1175-
bit and 1425-bit finite fields. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 177–193. Springer, Heidelberg, May
2013.

[Jou14] Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013,
volume 8282 of LNCS, pages 355–379. Springer, Heidelberg, August 2014.

[JP14a] Antoine Joux and Cécile Pierrot. Improving the polynomial time precomputation of
frobenius representation discrete logarithm algorithms - simplified setting for small char-
acteristic finite fields. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 378–397. Springer, Heidelberg, December 2014.

[JP14b] Antoine Joux and Cécile Pierrot. The special number field sieve in Fpn - application to
pairing-friendly constructions. In Zhenfu Cao and Fangguo Zhang, editors, PAIRING
2013, volume 8365 of LNCS, pages 45–61. Springer, Heidelberg, November 2014.

206



[JP16] Antoine Joux and Cécile Pierrot. Nearly Sparse Linear Algebra and application to Dis-
crete Logarithms Computations. In Contemporary Developments in Finite Fields and
Applications . 2016.

[JP19] Antoine Joux and Cecile Pierrot. Algorithmic aspects of elliptic bases in finite field
discrete logarithm algorithms. Cryptology ePrint Archive, Report 2019/782, 2019. .

[Kal95] Erich Kaltofen. Analysis of Coppersmith’s Block Wiedemann Algorithm for the Parallel
Solution of Sparse Linear Systems. Mathematics of Computation, 64(210):777–806, 1995.

[Kal97] Michael Kalkbrener. An upper bound on the number of monomials in determinants of
sparse matrices with symbolic entries. Mathematica Pannonica, 8:73–82, 1997.

[Kan83] Ravi Kannan. Improved Algorithms for Integer Programming and Related Lattice Prob-
lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC’83, pages 193–206, New York, NY, USA, 1983. Association for Computing Ma-
chinery.

[Kan87] Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathe-
matics of Operations Research, 12:415–440, 1987.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new com-
plexity for the medium prime case. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 543–571. Springer, Heidelberg,
August 2016.

[KDL+17] Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and Colin Stahlke.
Computation of a 768-bit prime field discrete logarithm. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
185–201. Springer, Heidelberg, April / May 2017.

[KEF19] Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque. Algebraic and euclidean
lattices: Optimal lattice reduction and beyond. Cryptology ePrint Archive, Report
2019/1436, 2019. .

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks:
Exploiting Speculative Execution. arXiv preprint arXiv:1801.01203, 2018.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy, pages 1–19. IEEE Computer Society Press, May 2019.

[KJ17] Taechan Kim and Jinhyuck Jeong. Extended tower number field sieve with application
to finite fields of arbitrary composite extension degree. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 388–408. Springer, Heidelberg, March 2017.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer,
Heidelberg, August 1999.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differ-
ential power analysis. Journal of Cryptographic Engineering, 1(1):5–27, Apr 2011.

[KM05] Neal Koblitz and Alfred Menezes. Pairing-based Cryptography at High Security Levels.
In Proceedings of Cryptography and Coding 2005, volume 3796 of LNCS, pages 13–36.
Springer-Verlag, 2005.

207



[KM07] Neal Koblitz and Alfred Menezes. Another Look at Generic Groups. Advances in Math-
ematics of Communications, 1:13, 2007.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 104–
113. Springer, Heidelberg, August 1996.

[Kra22] Maurice Kraitchik. Théorie des nombres. Number v. 1 in Théorie des nombres. Gauthier-
Villars, 1922.

[KW19] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-polynomial
time in finite fields of fixed characteristic. Cryptology ePrint Archive, Report 2019/751,
2019. .

[Laa16] Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing). In Roberto
Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 523–542.
Springer, Heidelberg, August 2016.

[Len87] Hendrik W. Lenstra. Factoring Integers with Elliptic Curves. Annals of Mathematics,
126(3):649–673, 1987.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard.
ARMageddon: Cache attacks on mobile devices. In Thorsten Holz and Stefan Savage,
editors, USENIX Security 2016, pages 549–564. USENIX Association, August 2016.

[LGS+17] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice, and
Stefan Mangard. Practical Keystroke Timing Attacks in Sandboxed JavaScript. In
ESORICS (2), pages 191–209, 2017.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[LM18] Thijs Laarhoven and Artur Mariano. Progressive Lattice Sieving. In International Con-
ference on Post-Quantum Cryptography, pages 292–311. Springer, 2018.

[LN20] Jianwei Li and Phong Q. Nguyen. A complete analysis of the BKZ lattice reduction
algorithm. Cryptology ePrint Archive, Report 2020/1237, 2020. .

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 1–23. Springer, Heidelberg, May / June 2010.

[LPSW19] Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet. An LLL al-
gorithm for module lattices. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part II, volume 11922 of LNCS, pages 59–90. Springer, Heidelberg,
December 2019.

[LS15] Adeline Langlois and Damien Stehlé. Worst-Case to Average-Case Reductions for Module
Lattices. Des. Codes Cryptography, 75(3):565–599, June 2015.

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shad-
owing. In USENIX Security Symposium, pages 557–574, 2017.

208



[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown: Reading kernel memory from user space. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018, pages 973–990. USENIX Associa-
tion, August 2018.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In IEEE Symposium on Security and Privacy, pages
605–622, 2015.

[Mas69] James L. Massey. Shift-register Synthesis and BCH Decoding. IEEE Transactions on
Information Theory, 15(1):122–127, 1969.

[Mat03] Dmitri V. Matyukhin. On asymptotic complexity of computing discrete logarithms over
GF (p). Discrete Mathematics and Applications, 13:27–50, 2003.

[May10] Alexander May. Using LLL-reduction for solving RSA and factorization problems. ISC,
pages 315–348. Springer, Heidelberg, 2010.

[MBA+20] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Johannes
Mittmann, and Jörg Schwenk. Raccoon Attack: Finding and Exploiting Most-Significant-
Bit-Oracles in TLS-DH(E). 2020.

[Mer78] Ralph C. Merkle. Secure Communications over Insecure Channels. Commun. ACM,
21(4):294–299, April 1978.

[MES18] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: A false dependency
attack against constant-time crypto implementations in SGX. In Nigel P. Smart, editor,
CT-RSA 2018, volume 10808 of LNCS, pages 21–44. Springer, Heidelberg, April 2018.

[MG02] Daniele Micciancio and Shafi. Goldwasser. Complexity of Lattice Problems. Kluwer
Academic Publishers, USA, 2002.

[Mic04] Daniele Micciancio. Generalized Compact Knapsacks, Cyclic Lattices, and Efficient
One-way Functions from Worst-case Complexity Assumptions. Electronic Colloquium
on Computational Complexity (ECCC), 01 2004.

[Mic11] Daniele Micciancio. How-many-lll-reduced-bases-are-there? answer1. Overflow:
http://mathoverflow.net, 2011.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX
amplifies the power of cache attacks. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 69–90. Springer, Heidelberg, September 2017.

[Mil75] Jeffrey C. P. Miller. On Factorisation, with a Suggested New Approach. Mathematics of
Computation, 29(129):155–172, 1975.

[MLB17] Artur Mariano, Thijs Laarhoven, and Christian Bischof. A Parallel Variant of LDSieve
for the SVP on Lattices. In 2017 25th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), pages 23–30. IEEE, 2017.

[MN01] Atsuko Miyaji and Masaki Nakabayashi. New Explicit Conditions of Elliptic Curve Traces
for FR-Reduction. IEEE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E84-A(5):1234–1243, May 2001.

[Möl03] Bodo Möller. Improved techniques for fast exponentiation. In Pil Joong Lee and
Chae Hoon Lim, editors, ICISC 02, volume 2587 of LNCS, pages 298–312. Springer,
Heidelberg, November 2003.

209

https://mathoverflow.net/questions/57021/how-many-lll-reduced-bases-are-there


[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–243, jan 1987.

[MR21] Gary McGuire and Oisín Robinson. Lattice Sieving in Three Dimensions for Discrete
Log in Medium Characteristic. Journal of Mathematical Cryptology, 15(1):223 – 236, 01
Jan. 2021.

[MSST20] Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, and Emmanuel Thomé. New
Discrete Logarithm Computation for the Medium Prime Case using the Function Field
Sieve. Advances in Mathematics of Communications, 0, 2020.

[MV10a] Manfred Madritsch and Brigitte Vallée. Modelling the LLL Algorithm by Sandpiles. In
Proceedings of the 9th Latin American Conference on Theoretical Informatics, LATIN’10,
pages 267–281, Berlin, Heidelberg, 2010. Springer-Verlag.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris. A Deterministic Single Exponential Time
Algorithm for Most Lattice Problems Based on Voronoi Cell Computations. In Proceed-
ings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, pages
351–358, New York, NY, USA, 2010. Association for Computing Machinery.

[MV10c] Daniele Micciancio and Panagiotis Voulgaris. Faster Exponential Time Algorithms for
the Shortest Vector Problem. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 1468–1480. SIAM, 2010.

[MVH+20] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. Copy-
Cat: Controlled instruction-level attacks on enclaves. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020, pages 469–486. USENIX Association, August
2020.

[MW68] Jeffrey C.P. Miller and Alfred E. Western. Tables of Indices and Primitive Roots. Uni-
versity Press, 1968.

[MW96] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 268–282. Springer, Heidelberg, August 1996.

[MW15] Daniele Micciancio and Michael Walter. Fast Lattice Point Enumeration with Mini-
mal Overhead. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’15, pages 276–294, USA, 2015. Society for Industrial and
Applied Mathematics.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Math-
ematical Notes, 55(2):165–172, 1994.

[NIS13] National Institute of Standards and Technology. Digital Signature Standard (DSS), 2013.

[NS02] Phong Q. Nguyen and Igor E. Shparlinski. The Insecurity of the Digital Signature
Algorithm with Partially Known Nonces. J. Cryptology, 15(3):151–176, 2002.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The Insecurity of the Elliptic Curve Digital
Signature Algorithm with Partially Known Nonces. Des. Codes Cryptography, 30(2):201–
217, 2003.

[NS06] Phong Q. Nguyen and Damien Stehlé. LLL on the Average. In Proceedings of the 7th
International Conference on Algorithmic Number Theory, ANTS06, Berlin, Heidelberg,
2006. Springer-Verlag.

[NV08] Phong Nguyen and Thomas Vidick. Sieve Algorithms for the Shortest Vector Problem
are Practical. Journal of Mathematical Cryptology, 2:181–207, 07 2008.

210



[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.
The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications.
In CCS, pages 1406–1418. ACM, 2015.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
The case of AES. In David Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS,
pages 1–20. Springer, Heidelberg, February 2006.

[OW99] Paul C. Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptol., 12(1):1–28, January 1999.

[Pag02] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. IACR
Cryptology ePrint Archive, Report 2002/169, 2002.

[Per05] Colin Percival. Cache Missing for Fun and Profit. In BSDCon 2005, Ottawa, CA, 2005.

[PGF98] Daniel Panario, Xavier Gourdon, and Philippe Flajolet. An analytic approach to smooth
polynomials over finite fields. In Joe P. Buhler, editor, ANTS-III, LNCS, pages 226–236.
Springer, 1998.

[PH78] Stephen C. Pohlig and Martin Hellman. An improved algorithm for computing loga-
rithms over GF (p) and its cryptographic significance (corresp.). IEEE Transactions on
Information Theory, 24(1):106–110, 1978.

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices
with pre-processing. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 685–716. Springer, Heidelberg, May 2019.

[Poh81] Michael Pohst. On the Computation of Lattice Vectors of Minimal Length, Successive
Minima and Reduced Bases with Applications. SIGSAM Bull., 15(1):37–44, February
1981.

[Pol78] John M. Pollard. Monte Carlo methods for index computation mod p. Mathematics of
Computation, 32:918–924, 1978.

[Pol93] John M. Pollard. The Lattice Sieve. In Arjen K. Lenstra and Hendrik W. Lenstra,
editors, The development of the number field sieve, pages 43–49, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

[Pom87] Carl Pomerance. Fast, rigorous factorization and discrete logarithm algorithms. Discrete
algorithms and complexity, pages 119–143, 1987.

[PPS12] Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn. A coding-theoretic
approach to recovering noisy RSA keys. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 386–403. Springer, Heidelberg, December
2012.

[PS09] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time
22.465n. Cryptology ePrint Archive, Report 2009/605, 2009. .

[PS13] Thomas Plantard and Michael Schneider. Creating a challenge for ideal lattices. Cryp-
tology ePrint Archive, Report 2013/039, 2013. .

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures
and counter-measures for smart cards. In Proceedings of the International Conference on
Research in Smart Cards: Smart Card Programming and Security, E-SMART ’01, pages
200–210, London, UK, 2001. Springer-Verlag.

211



[RSA78] Ron L. Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126, February
1978.

[Rup10] Raminder Singh Ruprai. Improvements to the Gaudry-Schost Algorithm for Multidimen-
sional discrete logarithm problems and Applications. PhD thesis, 2010.

[Sch86] Claus-Peter Schnorr. A more efficient algorithm for lattice basis reduction. In Laurent
Kott, editor, Automata, Languages and Programming, pages 359–369, Berlin, Heidelberg,
1986. Springer Berlin Heidelberg.

[Sch87] Claus-Peter Schnorr. A Hierarchy of Polynomial Time Basis Reduction Algorithms.
Theoretical Computer Science, 53, 12 1987.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidel-
berg, August 1990.

[Sch00] Oliver Schirokauer. Using Number Fields to Compute Logarithms in Finite Fields. Math-
ematics of Computation, 69:1267–1283, 2000.

[Sch05] Oliver Schirokauer. Virtual logarithms. Journal of Algorithms, 57:140–147, 2005.

[Sch13] Michael Schneider. Sieving for shortest vectors in ideal lattices. In Amr Youssef, Abder-
rahmane Nitaj, and Aboul Ella Hassanien, editors, AFRICACRYPT 13, volume 7918 of
LNCS, pages 375–391. Springer, Heidelberg, June 2013.

[SCNS16] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing
Page Faults from Telling Your Secrets. In AsiaCCS, pages 317–328. ACM, 2016.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice Basis Reduction: Improved Practical
Algorithms and Solving Subset Sum Problems. Math. Program., 66(2):181–199, Septem-
ber 1994.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In Donald J. Lewis,
editor, 1969 Number theory institute, volume 20 of Proc. Sympos. Pure Math, pages
415–440. Amer. Math. Soc., 1971.

[Sha82] Adi Shamir. A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem. In 23rd Annual Symposium on Foundations of Computer Science (sfcs
1982), pages 145–152, 1982.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidel-
berg, May 1997.

[SP17] Raoul Strackx and Frank Piessens. The Heisenberg Defense: Proactively Defend-
ing SGX Enclaves against Page-Table-Based Side-Channel Attacks. arXiv preprint
arXiv:1712.08519, 2017.

[SPLI06] Junhyuk Song, Radha Poovendran, Jicheol Lee, and Tetsu Iwata. The AES-CMAC
Algorithm. RFC 4493, June 2006.

[SS16a] Palash Sarkar and Shashank Singh. Fine tuning the function field sieve algorithm for the
medium prime case. IEEE Transactions on Information Theory, 62:2233–2253, 2016.

[SS16b] Palash Sarkar and Shashank Singh. A general polynomial selection method and new
asymptotic complexities for the tower number field sieve algorithm. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
37–62. Springer, Heidelberg, December 2016.

212



[SS16c] Palash Sarkar and Shashank Singh. New complexity trade-offs for the (multiple) number
field sieve algorithm in non-prime fields. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 429–458. Springer,
Heidelberg, May 2016.

[SS19] Palash Sarkar and Shashank Singh. A unified polynomial selection method for the (tower)
number field sieve algorithm. Advances in Mathematics of Communications, 13:435–455,
2019.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key
encryption based on ideal lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume
5912 of LNCS, pages 617–635. Springer, Heidelberg, December 2009.

[SWG+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA,
pages 3–24, 2017.

[Tes00] Edlyn Teske. On Random Walks For Pollard’s Rho Method. Mathematics of Computa-
tion, 70:809–825, 2000.

[The16] The FPLLL development team. FPLLL, a lattice reduction library. Found at
https://github.com/fplll/fplll, 2016.

[Tho02] Emmanuel Thomé. Subquadratic computation of vector generating polynomials and
improvement of the block Wiedemann algorithm. Journal of Symbolic Computation,
33(5):757–775, 2002.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and
Countermeasures. J. Cryptology, 23:37–71, 07 2010.

[TSS+03] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi Miyauchi.
Cryptanalysis of DES implemented on computers with cache. In Colin D. Walter, Çetin
Kaya Koç, and Christof Paar, editors, CHES 2003, volume 2779 of LNCS, pages 62–76.
Springer, Heidelberg, September 2003.

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. New Bleichenbacher records:
Fault attacks on qDSA signatures. IACR TCHES, 2018(3):331–371, 2018. .

[TTMH02] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi Hiyauchi. Crypt-
analysis of Block Ciphers Implemented on Computers with Cache. In International Sym-
posium on Information Theory and Its Applications, Xi’an, CN, October 2002.

[Van92] Scott Vanstone. Responses to NIST’s proposals, 1992.

[VBWK+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.
Telling your Secrets without Page Faults: Stealthy Page Table-based Attacks on Enclaved
Execution. In USENIX Security Symposium. USENIX Association, 2017.

[vEB81] Peter van Emde Boas. Another NP-complete Problem and the Complexity of Computing
Short Vectors in a Lattice. Tecnical Report, Department of Mathmatics, University of
Amsterdam, 1981.

[vSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more. In Kaisa
Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 3–21. Springer, Heidelberg,
April 2015.

[WF17] Wenbo Wang and Shuqin Fan. Attacking OpenSSL ECDSA with a small amount of
side-channel information. Science China Information Sciences, 61(3):032105, 2017.

213

https://github.com/fplll/fplll


[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Information Theory, 32:54–62, 1986.

[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved Nguyen-Vidick
Heuristic Sieve Algorithm for Shortest Vector Problem. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASIACCS ’11,
pages 1–9, New York, NY, USA, 2011. Association for Computing Machinery.

[WWB+17] Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang, XiaoFeng Wang, and Dinghao Wu.
Binary Code Retrofitting and Hardening Using SGX. In FEAST’17, pages 43–49. ACM,
2017.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems. In IEEE Symposium on Security
and Privacy (SP), pages 640–656. IEEE, 2015.

[XLCZ17] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. STACCO: Differen-
tially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure
Enclaves. In CCS, pages 859–874, 2017.

[YB14] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack. Cryptology ePrint Archive, Report
2014/140, 2014. .

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 719–732. USENIX Association, August 2014.

[YGH16] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A timing attack on
OpenSSL constant time RSA. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 346–367. Springer, Heidelberg, August 2016.

[YGL+15] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. Mapping the intel
last-level cache. Cryptology ePrint Archive, Report 2015/905, 2015. .

[YKSA15] Younis A. Younis, Kashif Kifayat, Qi Shi, and Bob Askwith. A New Prime and Probe
Cache Side-Channel Attack for Cloud Computing. In 2015 IEEE International Con-
ference on Computer and Information Technology; Ubiquitous Computing and Commu-
nications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, pages 1718–1724, 2015.

[ZPH14] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm for the shortest
vector problem. In Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors, Selected
Areas in Cryptography – SAC 2013, pages 29–47, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

214



Résumé en Français

La cryptographie à clé publique
La cryptographie s’intéresse au problème de l’échange de messages chiffrés, c’est-à-dire inintelligibles, que
seul un récepteur légitime peut déchiffrer, donc lire. Afin d’assurer une transmission sécurisée de ces
messages, une clé secrète est généralement partagée entre l’expéditeur et le destinataire. Cela pose la
difficulté importante d’échanger de manière sécurisée la clé secrète mentionnée ci-dessus.

Au début des années 1970, Merkle a commencé à s’écarter de ce concept de clé partagée et ses idées
publiées en 1978 [Mer78] ont été reprises dans l’article fondateur de Diffie et Hellman [DH76], New
directions in Cryptography. Dans leur article, Diffie et Hellman formalisent la notion de cryptographie à
clé publique où deux clés mathématiquement liées sont générées et utilisées : une clé publique et une clé
secrète. Un message est ensuite chiffré à l’aide de la clé publique du récepteur. Ce dernier sera alors le
seul capable de déchiffrer le message à l’aide de sa clé secrète correspondante.

Les cryptosystèmes à clé publique, également connus sous le nom de protocoles asymétriques, sont
tous construits en tenant compte de la notion de fonction à sens unique. Cette dernière correspond à
une fonction qui est facile à calculer pour toute entrée donnée mais difficile à inverser. Cette notion
correspond bien aux exigences d’un protocole asymétrique. En effet, pour qu’un protocole soit sûr et
efficace, le déchiffrement d’un message sans la clé secrète doit être proche de l’impossible, alors que le
chiffrement d’un message et le déchiffrement avec la clé secrète doivent être faciles, c’est-à-dire réalisés
uniquement avec des opérations simples.

C’est naturellement vers des problèmes mathématiques difficiles que les cryptographes se sont tournés
pour trouver des primitives appropriées pour leurs protocoles. Historiquement, deux candidats ont émergé
: la multiplication de deux nombres premiers et l’exponentiation modulaire. L’inverse de ces fonctions
consiste à factoriser un nombre entier et à calculer un logarithme discret. La difficulté de la factorisa-
tion est au cœur du cryptosystème RSA, bien connu et déployé [RSA78]. Dans cette thèse, nous nous
concentrerons sur le second candidat : l’exponentiation modulaire et son opération inverse, le calcul d’un
logarithme discret.

Exponentiation modulaire et logarithme discret
L’exponentiation modulaire consiste à calculer le reste d’une division euclidienne d’un entier g élevé à
une puissance x par un entier positif N , en calculant gx (mod N). Cette opération est fondamentale
dans la théorie computationnelle des nombres où elle se retrouve par exemple dans le petit théorème
de Fermat utilisé pour le test de primalité. L’exponentiation modulaire est également largement utilisée
en cryptographie à clé publique, où les éléments de groupes tels que les groupes multiplicatifs des corps
finis, Z/NZ ou le groupe des points rationnels des courbes elliptiques, sont souvent élevés à de grandes
puissances.

Pour des raisons pratiques, les opérations utilisées dans les protocoles cryptographiques doivent être
faciles et efficaces à réaliser. L’attrait de l’exponentiation modulaire pour la cryptographie provient en
partie de la simplicité de son calcul. En effet, le calcul d’une exponentiation modulaire peut se résumer
à multiplier g par lui-même x − 1 fois, puis à prendre le résultat modulo N . Cependant, cette méthode
serait très inefficace dans un contexte cryptographique en raison de la taille des nombres impliqués. Par
conséquent, afin de construire des protocoles cryptographiques pratiques qui utilisent l’exponentiation
modulaire, l’opération doit être effectuée de manière efficace.

L’efficacité des algorithmes qui calculent l’exponentiation modulaire dépend de divers paramètres tels

215



que le groupe considéré, la représentation de l’exposant ou le matériel utilisé. Comme l’exponentiation
modulaire est présente dans de nombreux protocoles, et qu’elle est souvent l’opération la plus coûteuse
du protocole, au fil des années, de nombreux algorithmes optimisés se sont accumulés pour améliorer son
calcul.

La plupart des algorithmes qui tentent d’optimiser l’exponentiation modulaire visent à réduire le
nombre de multiplications nécessaires. L’une des méthodes les plus anciennes et les plus simples est
l’algorithme du carré et de la multiplication (Square-and-Multiply, en anglais). Cette méthode est apparue
il y a plus de 2000 ans en Inde [Knu97]. L’algorithme opère bit par bit sur les bits de l’exposant et
n’effectue une opération de multiplication que si ce bit de l’exposant est 1.

Des algorithmes d’exponentiation modulaire plus sophistiqués font appel à différentes représentations
de l’exposant, comme la forme non adjacente (NAF) ou sa variante à fenêtre (wNAF). Nous renvoyons
le lecteur à [Gor98] pour une étude des méthodes d’exponentiation rapide.

Bien que de nombreux efforts aient été déployés pour optimiser les algorithmes d’exponentiation
modulaire, ces optimisations ont fait apparaître des vulnérabilités exploitables. En effet, les opérations
effectuées dans ces algorithmes sont souvent dépendantes des valeurs binaires de l’exposant. L’exécution
du code peut alors générer des fuites observables à partir desquelles des informations peuvent être dé-
duites sur l’exposant. Le caractère spécifique des informations divulguées dépend des détails de la mise
en œuvre de l’algorithme et souvent du matériel lui-même. Les attaques par canaux auxiliaires et en
particulier les attaques par cache sont les principales menaces à prendre en compte lors de l’utilisation
d’un algorithme d’exponentiation modulaire rapide pour un protocole.

L’opération inverse de l’exponentiation modulaire est le calcul d’un logarithme discret. L’étude des
logarithmes discrets et des algorithmes associés précède leur utilisation en cryptographie. En effet, dès le
19e siècle, les logarithmes de Zech sont utilisés pour accélérer les opérations arithmétiques dans les corps
finis.

En cryptographie, le protocole Diffie-Hellman datant de la fin des années 70 a marqué un tournant
dans l’étude des logarithmes discrets. L’utilisation plus récente des logarithmes discrets dans les proto-
coles basés sur les couplages, qui a débuté au début des années 2000, a relancé l’intérêt pour le sujet.
Concrètement, un logarithme discret est défini comme suit.

Definition 27 (Logarithme discret). Étant donné un groupe cyclique fini G d’ordre n, un générateur
g ∈ G et un élément h ∈ G, le logarithme discret de h en base g est l’élément x ∈ [0, n[ tel que gx = h.

Cette définition pose le problème suivant.

Definition 28 (Le problème du logarithme discret (DLP)). Étant donné un groupe cyclique fini G
d’ordre n, un générateur g ∈ G, et un élément h ∈ G, trouver x tel que gx = h.

Ce problème est considéré comme difficile pour la plupart des groupes G et constitue donc un candidat
prometteur pour la cryptographie à clé publique.

Question 90. Où peut-on trouver des logarithmes discrets et des exponentiations modulaires en cryp-
tographie ?

Des cryptosystèmes largement déployés, tels que le protocole d’échange de clés Diffie-Hellman, le
protocole de chiffrement d’ElGamal ou les protocoles de signature tels que (EC)DSA basent leur sécurité
sur des hypothèse liées à la difficulté du problème du logarithme discret. Nous décrivons certains de ces
protocoles.

Le protocole d’échange de clés de Diffie-Hellman [DH76]. Le protocole est assez simple. Deux
entités, Alice et Bob, souhaitent communiquer et pour ce faire, elles doivent d’abord se mettre d’accord
sur une clé secrète. Elles commencent par choisir un groupe G d’ordre n et un générateur g de ce groupe,
qui sont maintenant des paramètres publiques. Alice choisit ensuite un élément aléatoire a ∈ [0, n[ et
envoie l’élément de groupe ga à Bob via un canal publique. De même, Bob choisit b ∈ [0, n[ et envoie gb à

216



Alice. Les quantités, g, ga, gb sont toutes publiques. Alice et Bob peuvent maintenant tous deux calculer
la quantité

s = (ga)b = (gb)a,

qui constitue le secret partagé utilisé pour les communications futures.
Un attaquant qui souhaite intercepter une conversation entre Alice et Bob doit récupérer la valeur

secrète s. La récupération de gab à partir de g, ga, gb est connue comme le problème calculatoire de
Diffie-Hellman, qui est étroitement lié au calcul des logarithmes discrets [MW96]. Le protocole d’échange
de clés Diffie-Hellman est devenu une norme en 2003 (ANSI X9.42) et est utilisé dans des protocoles
largement déployés tels que HTTPS, SSH/TLS.

Le protocol de chiffrement d’ElGamal [ElG85]. Le protocole de chiffrement d’ElGamal est
étroitement lié à l’échange de clés Diffie-Hellman. Alice veut envoyer un message chiffré à Bob. Comme
pour tout protocole de chiffrement à clé publique, Bob doit générer une paire de clés, une publique et
une privée, qui sont mathématiquement liées. Pour ce faire, il choisit un groupe G d’ordre n ainsi qu’un
générateur g de G. La clé privée de Bob sera un élément b ∈ [0, n[ choisi au hasard et connu seulement
par Bob. La clé publique est constituée des éléments (G, g, gb).

Afin de chiffrer un message donné m vu comme un élément de G, Alice utilisera la clé publique de
Bob. Alice commence par choisir un élément aléatoire r ∈ [0, n[ et calcule la quantité c = m · (gb)r. Alice
calcule également c′ = gr. Le texte chiffré est donc composé des deux quantités (c, c′) qu’Alice envoie à
Bob.

Une fois que Bob reçoit le texte chiffré, il peut déchiffrer le message m en utilisant sa clé privée b. En
effet, Bob calcule c(c′b)−1 = m.

Un attaquant qui intercepte le texte chiffré (c, c′) et souhaite le déchiffrer devrait résoudre le problème
calculatoire de Diffie-Hellman. Le schéma de chiffrement ElGamal est largement utilisé pour les systèmes
de vote [BW14].

Le protocole de signature d’ElGamal [ElG85]. Considérons G = (Z/pZ)∗ pour un nombre premier
p. Alice veut envoyer un message m à Bob et en plus elle veut signer le message afin de l’authentifier.
Comme précédemment, elle possède une paire de clés secrètes/publiques (a, ga) où g est un générateur
du groupe G considéré. Pour générer sa signature, Alice choisit un entier aléatoire k ∈ [0, p− 1] où p est
l’ordre premier de G, et tel que k et p− 1 sont premiers entre-eux. Elle calcule alors les deux quantités
r = gk (mod p) et s = (m − ar)k−1 (mod p − 1). Sa signature est la paire (r, s) et elle l’envoie à Bob
avec le message m.

Si Bob veut vérifier la validité du message, il vérifie la signature d’Alice en utilisant sa clé publique.
D’après la génération de la signature, nous savons que m = ar + sk (mod p − 1). Puisque Bob connaît
la clé publique d’Alice, ga, nous pouvons comparer les quantités gm et gargsk modulo p.

D’autres schémas de signature tels que l’algorithme de signature numérique (DSA) de 1991 (spécifi-
cations dans FIPS 186-4 [NIS13]), une variante du schéma de signature ElGamal, et sa variante utilisant
les courbes elliptiques ECDSA [JMV01], sont également des protocoles normalisés basés sur la difficulté
de DLP.

Protocoles de couplage. La cryptographie basée sur les couplages est au cœur de nombreux produits
de sécurité qui sont mis sur le marché et la recherche de primitives efficaces les utilisant est très active.
C’est le cas notamment dans le domaine du zero-knowledge avec les applications de Zk-SNARKs aux
smart contracts.

Les preuves zero-knowledge permettent à un vérificateur de certifier qu’un prouveur a connaissance
d’un secret sans révéler d’informations sur le secret lui-même. Les Zk-SNARKs, Zero-knowledge Suc-
cinct Non-interactive Argument of Knowledge, sont des exemples de protocoles largement déployés dans
les smart contracts qui utilisent des preuves zero-knowledge. Beaucoup de ces protocoles utilisent des
couplages dans leurs constructions. L’évaluation de la sécurité de ces schémas est donc fondamentale.
Concrètement, un couplage cryptographique est défini comme suit.

217



Definition 29 (Couplage cryptograhique). Considérons les groupes abéliens finis G1, G2, et GT
d’ordre n. Un couplage cryptographique est une application

e : G1 ×G2 → GT ,

qui est

• bilinéaire, c’est-à-dire que pour tout a, b ∈ [0, n[, P ∈ G1 et Q ∈ G2 on a

e(aP, bQ) = e(P,Q)ab,

• non-dégénérée, c’est-à-dire que pour tout P ∈ G1, il existe Q ∈ G2 tel que e(P,Q) 6= 1 et pour
tout Q ∈ G2 il existe P ∈ G1 tel que e(P,Q) 6= 1,

• et calculable en temps polynomial dans la taille de l’entrée.

La sécurité des protocoles basés sur les couplages repose sur la difficulté du problème du logarithme
discret. En effet, au début des années 2000, la cryptographie basée sur les couplages a introduit de nou-
veaux schémas tels que le chiffrement basé sur l’identité [BF01], la signature basée sur l’identité [CC03],
la signature courte [BLS01] ou les schémas de signature aveugle utilisés par exemple dans les enclaves
SGX d’Intel (voir le chapitre 7) dont la sécurité est basée sur des hypothèses liées aux couplages qui
deviennent fausses si le DLP est cassé. Pour construire un protocole sécurisé basé sur un couplage, on
doit donc supposer que les DLP dans les trois groupes G1,G2,GT sont difficiles.

Une question naturelle découle des descriptions ci-dessus des schémas et du problème du logarithme
discret.

Question 91. Quel groupe G doit-on considérer?

L’évaluation de la difficulté de DLP est depuis longtemps un domaine de recherche actif. De nom-
breux algorithmes pour résoudre DLP sont apparus au fil des années. Ces algorithmes varient dans leur
construction et leur complexité dépend du groupe G considéré. La cryptographie a renouvelé l’intérêt
pour le problème du logarithme discret sur des groupes spécifiques. En pratique, le groupe G dans la
définition du problème du logarithme discret est choisi comme étant soit le groupe multiplicatif d’un
corps fini Fpn ou le groupe des points rationnels sur une courbe elliptique E définie sur un corps fini.

La cryptographie basée sur les couplages illustre la nécessité de considérer le problème de logarithme
discret à la fois sur les corps finis et sur les courbes elliptiques. En effet, les groupes considérés pour un
couplage cryptographique sont généralement G1, un sous-groupe de E(Fp), le groupe des points d’une
courbe elliptique E définie sur le corps premier Fp, G2, un autre sous-groupe de E(Fpn) où l’on considère
une extension de corps et GT un sous-groupe multiplicatif de ce même corps fini Fpn .

Il est intéressant de noter que le groupe de points rationnels sur une courbe elliptique E définie sur
un corps fini ne fournit aucune représentation utile pour accélérer le calcul d’un logarithme discret.
Par conséquent, les meilleurs algorithmes connus pour résoudre DLP sur ce groupe sont les algorithmes
génériques avec une complexité en racine carrée.

D’autre part, la prise en compte du problème du logarithme discret dans les corps finis Fpn a permis
d’améliorer considérablement l’efficacité des algorithmes qui le résolvent. La nature et la complexité de
ces algorithmes dépendent des caractéristiques du corps fini et plus précisément de la relation entre la
caractéristique p et le degré d’extension n. Les algorithmes les plus efficaces pour résoudre DLP dans
les corps finis proviennent de la famille des algorithmes de calcul d’indices. Parmi ces algorithmes, nous
avons le Function Field Sieve (FFS), le crible algébrique (Number Field Sieve en anglais, NFS) et ses
nombreuses variantes, ainsi que les algorithmes plus récents en temps Quasi-Polynomial (QP). Une vue
d’ensemble de tous ces algorithmes fait l’objet du Chapitre 1.

En 1994, Shor a introduit un algorithme quantique en temps polynomial pour calculer les logarithmes
discrets. Cela implique qu’aucun protocole s’appuyant sur la difficulté de DLP ne serait sûr en présence

218



d’ordinateurs quantiques, quel que soit le groupe considéré. Cependant, à l’heure actuelle, il n’existe pas
d’ordinateurs quantiques capables d’effectuer des calculs à grande échelle, bien que des progrès impres-
sionnants aient été réalisés ces dernières années (voir [AAB+19] pour une machine récente de 53 qubits).
Par conséquent, nous limiterons cette thèse à la configuration classique.

Un autre candidat: les réseaux euclidiens
Au cours des dernières décennies, motivés par la menace imminente des ordinateurs quantiques acces-
sibles, de nouveaux candidats prometteurs sont apparus pour construire des protocoles à clé publique :
réseaux, isogénies, codes correcteurs d’erreurs, polynômes multivariés et fonctions de hachage. Nous nous
concentrons ici sur les réseaux.

L’étude des réseaux en mathématiques a commencé dès le 18e siècle. Des mathématiciens tels que
Gauss, Lagrange et Minkowski ont étudié les réseaux dans le contexte de la géométrie des nombres et de
la géométrie convexe, plus particulièrement pour la théorie de la réduction des formes quadratiques qui
a ensuite conduit au célèbre algorithme de Gauss. Il faut attendre les années 1980 pour que les réseaux
soient étudiés d’un point de vue informatique et utilisés dans des domaines plus proches de l’informatique
tels que l’optimisation combinatoire et la cryptographie.

En cryptographie, les réseaux sont utilisés pour la première fois pour casser des cryptosystèmes.
Des algorithmes tels que l’algorithme de Lenstra, Lenstra, Lovász (LLL) [LLL82] sont développés pour
donner des solutions approximatives aux problèmes de réseaux difficiles et sont largement utilisés pour la
cryptanalyse. En 1982, Shamir [Sha82] a utilisé l’algorithme LLL pour casser le système de chiffrement
de Merkle-Hellman. En 1996, Coppersmith [Cop96b, Cop96a] a proposé une méthode permettant de
factoriser un entier n lorsque certains bits des facteurs de n sont connus, en utilisant des algorithmes de
réduction de base de réseaux tels que LLL, affectant ainsi la sécurité du cryptosystème RSA.

L’utilisation de réseaux pour la conception de protocoles cryptographiques n’a commencé qu’en 1996
avec les travaux d’Ajtai [Ajt96]. Les premiers cryptosystèmes à utiliser des réseaux comme blocs de
construction sont les cryptosystèmes Ajtai-Dwork [AD97] et NTRU [HPS98] à la fin des années 90.
Aujourd’hui, la cryptographie basée sur les réseaux est un domaine de recherche important et de nombreux
protocoles basés sur les réseaux sont candidats à la compétition post-quantique du NIST. Dans cette
thèse, nous ne considérerons pas les protocoles construits sur la difficulté des problèmes liés aux réseaux.
Cependant, nous utiliserons les techniques de réseaux dans deux configurations différentes :

• nous utilisons des algorithmes de réduction de réseaux pour produire des polynômes à petits coeffi-
cients, voir Chapitre 3 ou pour trouver les petites racines de polynômes modulaires, voir Partie III.

• nous utilisons des algorithmes d’énumération dand les réseaux, en particulier une adaptation de
l’algorithme de Schnorr-Euchner, pour accélérer la recherche de relations algébriques dans le con-
texte des calculs de logarithmes discrets, voir le chapitre 4.

Des informations préliminaires sur les réseaux et les algorithmes associés sont donc données dans le
Chapitre 2.

Remark 26. Dans cette thèse, nous parlerons de crible pour les réseaux et de cible algébrique. Ces
deux notions ne désignent pas la même chose ! Le crible algébrique fait généralement référence à une
étape de NFS, tandis que le crible pour les réseaux, tel que le Gauss Sieve, fait référence à un algorithme
concernant les réseaux qui trouve des vecteurs courts. Le crible pour les réseaux peut également être trouvé
dans le contexte de NFS. Nous précisons quel crible est considéré lorsque le contexte n’est pas clair.

Contributions
L’objectif de cette thèse est de répondre à la question suivante.

Question 92. Comment évaluer la sécurité des protocoles dans lesquels une exponentiation modulaire
impliquant un secret est effectuée ?

La réponse à cette question se divise en deux points.

219



1. La résolution du problème du logarithme discret donne un accès direct à l’exposant, donc au secret.
Ainsi, nous voulons estimer la difficulté de DLP dans les groupes considérés par les protocoles.

2. L’étude des vulnérabilités d’implémentation pendant l’exponentiation rapide peut également con-
duire à l’exposant secret. Ainsi, nous voulons également évaluer et étudier les attaques rendues
possibles grâce aux informations fuitées par des canaux auxiliaires.

Ces deux points vont façonner la structure de cette thèse.

Estimation de la difficulté de DLP dans les corps finis
Une façon d’estimer la sécurité des protocoles basés sur la difficulté du problème du logarithme discret est
d’étudier directement la complexité des algorithmes qui résolvent ce dernier. Comme nous l’avons men-
tionné plus haut, cela dépend fortement du groupe considéré. Dans cette thèse, nous nous concentrerons
sur l’estimation de la difficulté de DLP pour des corps finis spécifiques.

Question 93. Sur quels corps finis nous concentrons-nous et pourquoi ?

Les corps finis Fpn sont généralement séparés en trois familles appelées petite, moyenne et grande car-
actéristique, en fonction de la relation entre la caractéristique p et le degré d’extension n du corps fini.
À ce jour, les algorithmes connus les plus rapides pour résoudre DLP sont les algorithmes en temps
quasi-polynomial pour les corps finis de petite caractéristique [BGJT14, KW19].

Cependant, dans cette thèse, nous nous intéresserons aux corps finis compris entre la frontière entre
petite et moyenne caractéristique et la grande caractéristique. En effet, comme ces familles ne fournissent
pas l’algorithme connu le plus rapide pour résoudre DLP, elles concernent la plupart des corps finis utilisés
en pratique, par exemple dans les protocoles basés sur les couplage. Par conséquent, l’estimation de la
difficulté du DLP pour ces familles a un impact significatif sur notre compréhension de la sécurité des
protocoles largement déployés.

Notre première motivation concerne la sécurité des protocoles basés sur les couplages. Si nous voulons
qu’un couplage soit sûr, nous voulons équilibrer la complexité de l’algorithme en racine carrée qui calcule
les logarithmes discrets dans le sous-groupe pertinent de la courbe elliptique considérée, et la complexité
de l’algorithme le plus rapide qui résout DLP dans le corps fini. Ceci nous a amené à étudier les
algorithmes de la famille du calcul d’indice mentionnés ci-dessus à la frontière entre les corps finis de
petite caractéristique et ceux de caractéristique moyenne. La complexité asymptotique de ces algorithmes
à ce cas frontière était, jusqu’à cette thèse, inexistante dans la littérature. Cette étude nous a également
permis de fournir des points d’intersection précis entre ces nombreuses complexités. Ce sera l’objet
du Chapitre 3, illustré par la figure 1. Grâce à cette analyse, nous avons finalement pu fournir des
informations supplémentaires sur les paramètres de sécurité des protocoles basés sur les couplages. Plus
précisément, ce chapitre répond à la question suivante.

Question 94. Asymptotiquement, quel corps fini Fpn devrait être considéré afin d’obtenir le plus haut
niveau de sécurité lors de la construction d’un couplage ?

Dans ce chapitre, nous donnons des valeurs optimales pour la caractéristique p et le degré d’extension
n, en prenant également en compte la valeur dite ρ des constructions de couplages. Fait surprenant,
nous avons pu distinguer quelques caractéristiques spéciales qui sont asymptotiquement aussi sûres que
les caractéristiques de même taille mais sans forme spéciale. L’article suivant résume nos résultats.

1. Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite
fields, avec Pierrick Gaudry et Cécile Pierrot, publié dans les actes de la conférence Crypto 2020.

Une autre façon d’obtenir de meilleures estimations de sécurité consiste à réaliser des expériences à
grande échelle avec des variantes du Number Field Sieve. En effet, l’algorithme Number Field Sieve
a donné lieu à de nombreuses variantes, chacune tentant de réduire la complexité asymptotique de
l’algorithme original. L’une de ces variantes est le Tower Number Field Sieve (TNFS). Ce dernier exploite
la structure algébrique des tours de corps de nombres. Malgré le fait qu’en théorie la variante est plus

220



petite caracteristique caracteristique moyenne

QP Variantes de NFS

cas frontière

FFS Variantes de NFS

Figure 1: Représentation des corps finis et algorithmes associés étudiés dans le Chapitre 3.

que prometteuse, aucune implémentation et donc aucun calcul record n’avait été fait en utilisant TNFS,
jusqu’à cette thèse.

Un obstacle majeur à une mise en œuvre efficace de TNFS est la collection de relations algébriques
où des équations entre de petits éléments de corps de nombres doivent être trouvées. Le cas de TNFS
est plus complexe que celui de NFS car cette collecte de relations se produit en dimension supérieure
à 2. Cela nécessite la construction de nouveaux algorithmes de crible qui restent efficaces lorsque la
dimension augmente. Dans le Chapitre 4, nous surmontons cette difficulté en considérant un algorithme
d’énumération sur les réseaux que nous adaptons à ce contexte spécifique. Nous considérons également
une nouvelle zone de crible, une sphère de haute dimension, alors que les algorithmes de crible précédents
(pour les dimensions 2 et 3) considéraient un hyper-parallélépipède.

Cela nous a permis d’effectuer le premier calcul record d’un logarithme discret avec TNFS dans un
corps fini de 521 bits Fp6 . Le corps fini cible Fp6 choisi est de la même forme que les corps finis utilisés
dans les récentes preuves zéro knowledege de certaines blockchains. Ce calcul record a été annoncé en
février 2021.

2. Discrete logarithm in GF(p6) with Tower NFS avec Pierrick Gaudry et Cécile Pierrot, annoncé
dans liste de diffusion de Théorie des Nombres. Article correspondant en cours de soumission.

Les détails de l’implémentation et du calcul sont donnés dans le Chapitre 5. Comme on peut le voir
dans le Tableau 1, notre algorithme est beaucoup plus rapide que les algorithmes de crible en dimension
supérieur à deux existants malgré la plus grande dimension et le plus grand corps fini.

Paramètres [GGMT17] [MR21] Cette thèse
Algorithme NFS NFS TNFS

Taille du corps fini (bits) 422 423 521
Dimension de crible 3 3 6
Temps de crible 201,600 69,120 23,300

Table 1: Comparison de l’étape de collecte de relations en heures de calcul sur un coeur avec [GGMT17]
et [MR21] pour Fp6 .

Ces deux travaux contribuent à estimer la difficulté du DLP dans les corps finis en étudiant les
complexités asymptotiques des algorithmes pertinents et en fournissant un calcul record avec TNFS. Les
considérations faites sur la sécurité des couplages devraient compléter les estimations pratiques trouvées
dans la littérature et, espérons-le, orienter les cryptanalystes vers les bons choix de paramètres. Les
performances pratiques de TNFS avec notre nouvel algorithme de crible sont prometteuses et indiquent
que des corps finis plus grands pourraient être atteints en un temps raisonnable. En général, les calculs
records fournissent des indications supplémentaires sur l’écart entre les tailles de clés recommandées pour
les protocoles basés sur DLP et ce qui est faisable sur le plan informatique.

Exploitation des vulnérabilités de l’exponentiation rapide
La sécurité des protocoles déployés ne dépend pas seulement de la difficulté du problème mathématique
sous-jacent, mais aussi de l’implémentation des algorithmes concernés.

221



Les implémentations vulnérables de l’exponentiation modulaire rapide ont souvent été la cible d’attaques
par canaux auxiliaires où des informations secrètes sont récupérées en créant des liens observables entre
les différentes unités d’exécution du CPU. En particulier, les attaques temporelles exploitent les variations
du temps d’exécution qui sont courantes dans les algorithmes d’exponentiation modulaire.

Dans le Chapitre 6, nous présentons un aperçu des techniques connues pour récupérer des clés secrètes
à partir d’informations partielles. La fuite d’information, généralement un certain nombre de bits d’un
élément secret du protocole, est illustrée dans la Figure 2.

Exposant secret

Information partielle (bits)

Figure 2: Exemple de representation de l’information partielle fuitée par une attaque par canaux auxili-
aires.

De nombreuses techniques de récupération de clés secrètes à partir d’informations partielles existent en
fonction de la nature de l’information récupérée par l’attaque par canaux auxiliaires et des spécificités de
l’algorithme utilisé. Ce chapitre présente les techniques les plus utiles ainsi qu’une classification complète
de ce qui est connu pour être efficace pour les scénarios les plus couramment rencontrés dans la pratique.
Nous nous concentrons sur les algorithmes largement utilisés qui sont les cibles les plus populaires des
attaques, à savoir RSA, (EC)DSA et Diffie-Hellman (ainsi que sa variante avec une courbe elliptique).
Nos résultats figurent dans l’article suivant.

3. Recovering cryptographic keys from partial information, by example, avec Nadia Heninger.
Mis en ligne sur Eprint:Report 2020/1506.

Les techniques présentées dans le Chapitre 6 ont souvent conduit à des attaques réelles sur des
protocoles déployés. Dans cette thèse, nous nous concentrons sur deux de ces techniques qui reposent sur
des constructions de réseaux : le Hidden Number Problem et le Extended Hidden Number Problem.

Dans le Chapitre 7, nous étudions la sécurité de l’implémentation d’Intel du protocole EPID (Ex-
tended Privacy ID), un protocole d’authentification et d’attestation à distance. Nous identifions une
faiblesse d’implémentation qui fait fuiter des informations via un canal auxiliaire du cache. Cette fuite
d’information nous permet de monter une approche basée sur les réseaux pour résoudre le Hidden Number
Problem, que nous adaptons à la preuve zero-knowledge du protocole EPID, étendant ainsi les attaques
antérieures sur les systèmes de signature. Ce travail montre qu’un fournisseur d’attestation malveillant
peut utiliser l’information divulguée pour briser les garanties de non-liaison d’EPID. Nous fournissons
également des preuves expérimentales que l’attaque par réseaux peut toujours réussir même lorsqu’un
petit nombre de traces erronées est inclus. Ces résultats sont présentés dans l’article suivant.

4. CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache At-
tacks, avec Fergus Dall, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi et
Yuval Yarom, publié dans le journal IACR Transactions on Cryptographic Hardware and Embedded
Systems,Volume 2, 2018.

Nous nous concentrons enfin sur la sécurité du protocole ECDSA lorsque le nonce k utilisé dans
l’algorithme de signature comme exposant modulaire est exprimé sous la forme wNAF. Dans le Chapitre 8,
nous réétudions la construction du réseau utilisé dans le Extended Hidden Number Problem (EHNP).
Nous trouvons la clé secrète avec seulement 3 signatures, atteignant ainsi une limite théorique connue,
alors que les meilleures méthodes précédentes nécessitaient au moins 4 signatures en pratique. Étant
donné un modèle de fuite spécifique, notre attaque est plus efficace que les attaques précédentes et, dans
la plupart des cas, a une meilleure probabilité de succès. Nous fournissons également une première analyse
de la résistance aux erreurs de EHNP. Ce travail est décrit dans l’article suivant.

5. A Tale of Three Signatures: Practical Attack of ECDSA with wNAF, avec Cécile Pierrot
et Rémi Piau, publié dans les actes de la conférence Africacrypt 2020.

222



En considérant des cibles réelles telles que EPID dans l’architecture d’Intel et l’algorithme ECDSA
largement déployé, nous montrons tout au long de ces travaux que même si les bons paramètres sont pris
en compte pour que le problème du logarithme discret reste suffisamment difficile à résoudre à des fins
cryptographiques, les attaques peuvent provenir d’implémentations vulnérables de l’exponentiation mod-
ulaire. Afin d’évaluer réellement la sécurité des protocoles à clé publique déployés, il faut donc considérer
simultanément les menaces provenant de la primitive mathématique elle-même et de l’implémentation
des algorithmes.

Les contributions et l’organisation de la thèse sont résumées dans la Figure 3.

Estimation de la sécurité des
protocoles basé sur DLP.

Difficulté de
DLP sur Fpn .

Vulnérabilités des
implémentations.

Chapitre 3: complexités asympto-
tiques pour couplages.

Chapitre 4: crible rapide dans les
réseaux pour TNFS

Chapitre 5: record 521-bit dans
Fp6 avec TNFS.

Chapitre 6: récupération de clés
secrètes avec information partielle.

Chapitre 7: attaque d’EPID dans
SGX.

Chapitre 8: attaque de ECDSA
avec forme wNAF.

Figure 3: Organisation des contributions de la thèse.

Autre contribution
Overstretched NTRU est une variante de NTRU avec un grand modulo. De récentes attaques de sous-
corps et de sous-anneaux de réseaux ont brisé les paramètres suggérés pour plusieurs schémas. Il existe un
certain nombre d’affirmations contradictoires dans la littérature sur l’attaque qui présente les meilleures
performances. Ces affirmations sont généralement basées sur des expériences plutôt que sur des analyses.

Dans ce travail, nous soutenons que les comparaisons devraient se concentrer sur la dimension du
réseau utilisé dans l’attaque. Nous donnons des preuves, à la fois analytiques et expérimentales, que
l’attaque par sous-anneaux trouve des vecteurs plus courts et devrait donc réussir avec un réseau de plus
petite dimension que l’attaque par sous-corps pour les mêmes paramètres du problème, et également
réussir avec un modulo plus petit lorsque la dimension du réseau est fixée.

Comme la thématique de ce travail est en dehors du thème principal de cette thèse, nous ne l’incluons
pas dans le manuscrit. L’article suivant résume ces résultats.

6. Characterizing overstretched NTRU attacks, avec Nadia Heninger et Barak Shani. Présenté
à Mathcrypt 2018, publié dans Journal of Mathematical Cryptology, Volume 14, no. 1, 2020.

223



224



Abstract

Public-key cryptosystems are constructed using one-way functions which ensure both the security
and the efficiency of the schemes. One of the two main candidates originally considered to construct
public-key cryptosystems is modular exponentiation with its hard inverse operation, computing discrete
logarithms. In this thesis, we study the security of protocols that make use of modular exponentiation
where the exponent is a secret of the protocol. In order to assess the security of such protocols, one
can either estimate the hardness of directly solving the discrete logarithm problem (DLP) in the groups
considered by the protocols or look at implementation vulnerabilities coming from fast exponentiation
algorithms.

One way of estimating the security of protocols based on the hardness of the discrete logarithm
problem is to directly study the complexity of the algorithms that solve the latter. In this thesis, we first
study the asymptotic complexity of algorithms that solve DLP over finite fields Fpn precisely of the form
where pairings take their values. These algorithms come from the index-calculus family from which the
Number Field Sieve (NFS) is an example. This study allows us to draw conclusions on the security of
pairing-based protocols. We also propose a first implementation of the variant Tower Number Field Sieve
(TNFS) of NFS, which has better asymptotic complexity, along with a record computation of a discrete
logarithm in a 521-bit finite field with TNFS. This variant had never been implemented before due to
the difficulty of sieving in higher dimensions, i.e., dimensions greater than two.

Finally, the security of deployed protocols not only relies on the hardness of the underlying mathemati-
cal problem but also on the implementation of the algorithms involved. Many fast modular exponentiation
algorithms have piled up over the years and some implementations have brought forth vulnerabilities that
are exploitable by side-channel attacks, in particular cache attacks. The second aspect of this thesis thus
considers key recover methods when partial information is recovered from a side channel.

Résumé
Les cryptosystèmes dits à clé publique sont construits à l’aide de fonctions à sens unique qui assurent
à la fois la sécurité et l’efficacité des cryptosystèmes. L’un des deux principaux candidats envisagés à
l’origine pour construire de tels cryptosystèmes est l’exponentiation modulaire avec son opération inverse,
le calcul de logarithmes discrets. Dans cette thèse, nous étudions la sécurité de protocoles qui utilisent
des exponentiations modulaires où l’exposant est un secret du protocole. Afin d’évaluer la sécurité de tels
protocoles, on peut d’une part estimer la difficulté de résoudre directement le problème du logarithme
discret (DLP) dans les groupes considérés par les protocoles, ou examiner les vulnérabilités issues de
l’implémentation des algorithmes d’exponentiation rapide.

Une première façon d’estimer la sécurité des protocoles basés sur la difficulté du problème du log-
arithme discret est d’étudier directement la complexité des algorithmes qui résolvent ce dernier. Dans
cette thèse, nous étudions la complexité asymptotique des algorithmes qui résolvent le DLP sur des corps
finis Fpn précisément de la forme où les couplages prennent leurs valeurs.

Nous proposons également une première implémentation et un calcul record d’un logarithme discret
dans un corps fini de 521 bits en utilisant l’algorithme Tower Number Field Sieve, une variante de NFS
dont la complexité asymptotique est meilleure. Cette variante n’avait jamais été implémentée auparavant
en raison de la difficulté du crible algébrique dans des dimensions supérieures à deux.

Enfin, la sécurité des protocoles déployés ne repose pas seulement sur la difficulté du problème math-
ématique sous-jacent, mais aussi sur l’implémentation des algorithmes considérés. De nombreux algo-
rithmes d’exponentiation modulaire rapide se sont accumulés au fil des ans et certaines implémentations
ont fait apparaître des vulnérabilités exploitables par des attaques par canaux auxiliaires. Un second
aspect de cette thèse considère donc les principales méthodes pour reconstituer une clé secrète lorsque
des informations partielles sont récupérées à partir d’un canal auxiliaire.

225



226


	Couverture
	Remerciements
	Contents
	Introduction
	Public-key cryptography
	Contributions
	Estimating the hardness of DLP in finite fields
	Exploiting implementation vulnerabilities from fast exponentiation
	Other contributions



	I Preliminaries
	Overview of algorithms for the discrete logarithm problem
	Generic algorithms for the discrete logarithm problem
	Pohlig-Hellman's reduction
	Baby-step Giant-step algorithm
	Pollard algorithms

	Index Calculus methods
	Index calculus algorithms
	Small, medium and large characteristics

	The general setting of FFS, NFS and its variants
	Overview of the algorithms: a general presentation
	Description of the variants


	Lattices and related hard computational problems
	Lattices
	Euclidean lattices
	Algorithmic problems related to Euclidean lattices
	Ideal and module lattices
	Random lattices and random bases

	Enumeration to solve exact SVP and CVP
	General framework of enumeration algorithms
	Constructing an enumeration tree
	The complexity of enumeration algorithms

	Reduction algorithms for Euclidean lattices
	The LLL algorithm
	Analyzing LLL via a directed graph
	The BKZ algorithm



	II The discrete logarithm problem in finite fields
	Asymptotic analysis of DLP algorithms at the first boundary
	Introduction
	Motivation: pairing-based protocols
	Contributions

	The FFS algorithm at the boundary case
	Complexity analysis of FFS
	The pinpointing technique
	Fixing a rounding bug in the FFS analysis of FFS16
	Improving the complexity of FFS in the composite case

	Tools for the analysis of NFS and its variants
	General methodology
	Smoothness probability
	Methodology for the complexity analysis of NFS

	Polynomial selections
	Polynomial selections for NFS and MNFS
	Polynomial selections for exTNFS and MexTNFS
	Polynomial selections for SNFS and STNFS

	Complexity analyses of (M)(ex)(T)NFS
	(M)NFS
	(M)exTNFS
	S(T)NFS

	Crossover points between NFS, FFS and the Quasi-Polynomial algorithms
	Quasi-Polynomial algorithms
	Crossover between FFS and QP
	Crossover between NFS and FFS

	Considering pairings
	Landing at p=LQ(1/3) is not as natural as it seems
	Fine tuning of cp to get the highest security
	Conclusion


	Enumeration algorithms for algebraic sieving in TNFS
	Introduction
	Motivation
	Contribution

	The Tower Number Field Sieve
	Mathematical setup
	A step by step walk through TNFS
	Virtual logarithms and Schirokauer maps

	Focus on the relation collection
	The special-q setup
	Different algorithms for sieving
	Other algorithms to find smooth norms
	Combining three algorithms
	Filtering through equivalent relations

	Relation collection with lattice enumeration
	Existing algorithms to enumerate LQ, p S
	Why do we choose a d-sphere?
	Schnorr-Euchner's enumeration algorithm for TNFS
	Analysis of the enumeration algorithm
	Overall complexity of relation collection

	Comparing with other methods
	Comparing with gremy
	Comparing with irish

	Conclusion

	An implementation and a 521-bit Fp6 record with TNFS
	Our target
	Polynomial selection
	Collecting relations
	Adjusting parameters before sieving
	Analyzing the sieving step: enumerating in a lattice
	Balancing sieving, batch and ECM
	From a set of relations to a matrix

	Linear algebra
	Duplicates and filtering
	Schirokauer maps
	Solving the system

	Descent step and discrete logarithm of the target
	Comparing with NFS computations
	Size of norms in our TNFS computation
	Comparing with factoring with NFS
	Comparing with DLP with NFS
	Comparing with other high-dimension sieves

	Conclusion


	III Partial key recovery from side-channel information
	Overview of partial key recovery methods
	Introduction
	Motivation

	Key recovery methods for RSA
	RSA Preliminaries
	RSA Key Recovery with Consecutive bits known
	Non-consecutive bits known with redundancy

	Key recovery methods for DSA and ECDSA
	DSA and ECDSA preliminaries
	(EC)DSA key recovery from most significant bits of the nonce k

	Key recovery method for the Diffie-Hellman Key Exchange
	Finite field and elliptic curve Diffie-Hellman preliminaries
	Most significant bits of finite field Diffie-Hellman shared secret
	Discrete log from contiguous bits of Diffie-Hellman secret exponents

	Conclusion

	Cachequote: attacking EPID signature protocol in SGX with HNP
	Introduction
	Our Contribution
	Targeted Software and Hardware

	Preliminaries
	Using a cache attack: Prime+Probe
	Intel SGX
	Bilinear Maps
	Enhanced Privacy ID

	SGX EPID Provisioning and Attestation
	Provisioning and Quoting Enclave Implementations
	Scalar Multiplication in the Quoting Enclave

	Short Scalar Leakage via High Resolution Side Channels
	Controlled Prime+Probe Attack
	Loop Counting Analysis

	A Lattice Attack on EPID
	Conversion to a Hidden Number Problem
	Solving the Hidden Number Problem
	Performance Tradeoffs
	Recovering f

	Conclusions

	Attacking ECDSA signature protocol with EHNP
	Introduction
	Our contribution

	Attacking ECDSA using lattices
	Using EHNP to attack ECDSA
	Constructing the lattice

	Improving the lattice attack
	Reducing the lattice dimension: the merging technique
	Preprocessing the traces

	Performance analysis
	Error resilience analysis
	Tables for error analysis

	Countermeasures


	Conclusion
	Bibliography
	Résumé en Français
	Abstract
	Résumé

