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What? Why? Where? Cryptography …

Secure communication Cryptographic protocols for: 

• Confidentiality  (encryption schemes) 

• Authentication and non-repudiation (signature schemes) 

• Integrity and validity of data (hash functions) 

• …
Eavesdropper
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Hard problems for Cryptography
Use (hopefully) intractable problems to construct cryptographic primitives.

Start from…
• factorisation 

• discrete logarithm 

• lattice problems 

• isogeny problems 

• …

… to obtain:

• encryption schemes 

• signature schemes 

• hash functions 

• …
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What is a discrete logarithm?

Definition: Given a finite cyclic group  of order , a generator  and some 
element , the discrete logarithm of  in base  is the element  
such that 

G n g ∈ G
h ∈ G h g x ∈ [0,n)
gx = h .

2

3

4

5

6

1
Example: , G = ℤ×

7 g = 3,

h = 6 ∈ ℤ×
7 ,

g1 ≡ 3 (mod 7)

g2 = 9 ≡ 2 (mod 7)

g3 = 27 ≡ 6 (mod 7)

The discrete logarithm of  in base  is h g 3.
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The discrete logarithm problem (DLP)

Definition: Given a finite cyclic group  of order , a generator  and 
some element , find the element  such that 

G n g ∈ G
h ∈ G x ∈ [0,n) gx = h .

Computing the inverse, a modular exponentiation is easy: gx = g ⋅ g ⋅ ⋯ ⋅ g

x

Solving DLP can be hard (depending on the group ):G h = g ⋅ g ⋅ ⋯ ⋅ g

??

algorithms in O(log(x))
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Motivation: why do we care about modular exponentiation?

Many protocols use modular exponentiation where the exponent is a secret. 

Example 1: Diffie-Hellman key exchange [DH76] 

• Public data:   

• Shared key:  

g, ga, gb ∈ G

gab ∈ G

Example 2: pairing-based protocols 

• Identity-based encryption/signature schemes [BF01], [CC03] 

• Short signature schemes (eg, BLS signatures [BLS01]) 

Security based on assumptions that 
become false if DLP is broken.

[BF01]: D. Boneh, M. Franklin, Identity-based encryption from Weil pairing. Crypto’01

[CC03]: J. Cha, J. Cheon,  An identity-based signature from gap Diffie-Hellman groups. PKC’03

[BLS01]: D. Boneh, B. Lynn,  H. Shacham, Short signatures from the Weil pairing. Asiacrypt’01

[DH76]: W. Diffie, M. Hellman, New directions in cryptography. Trans. Info. Theory, 1976
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In my work

• Estimate the hardness of DLP in the groups considered by the protocols. 

• Look at implementation vulnerabilities during fast exponentiation.

How can we assess the security of protocols in which a modular exponentiation 
involving a secret exponent is performed?
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An example: EPID protocol in Intel SGX 
• What is EPID?  a protocol to allow remote attestation of a hardware platform without compromising the 

device’s identity. 

•The protocol includes a signing algorithm that uses pairings. 

                                             - secret key includes the element    

•How can we recover  ? 

                                      - During the protocol, consider a random secret nonce  

                                      - Compute an exponentiation       

                                      - Outputs the element     +   

f ∈R ℤq

f

r ∈ ℤq

Xr

s ← r cf ( hash of known values)c =
9



How can we recover the secret    ?f

 Since     +  ,    if we recover  , we directly get   .  s ← r cf r f

If we have as target  : 

1. Solve DLP to find exponent   in 3072-bit finite field  . 

2. Look at implementation vulnerabilities during the computation of .  

Xr

r 𝔽p12

Xr

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).
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Thesis contributions
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Implementation vulnerabilities
Exploiting leakage from side-channels 
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How can we recover the secret    in EPID ?f

If we have as target  : 

1. Solve DLP to find exponent   in 3072-bit finite field  . 

2. Look at implementation vulnerabilities during the computation of .  

Xr

r 𝔽p12

Xr

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).
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Recovering partial information on  is enough to obtain  .r f

 Since     + ,    if we recover  , we directly get    .  s ← r cf r f



What is partial information and where does it come from?

1. Side-channel attacks, in particular cache attacks. 

2. Many microarchitectural side-channel attacks use variations in execution time as the source of leakage. 

3. Fast modular exponentiation algorithm are rarely constant-time !

In this thesis, we focus on how to what to do with the leaked information. 
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Key recovery methods
I have obtained the following type of incomplete information 
about the secret key. Does it allow me to efficiently recover 
the rest of the key?

• algorithm considered 

• nature of the information leaked

Methods depend on:

15Recovering cryptographic keys from partial information, by example, with Nadia Heninger, Eprint 2020/1507



The (Extended) Hidden Number Problem

In my work: 

• Lattice-based approach 

• Optimizing the lattice construction 

• Error handling 

• Concrete attacks:  

                - EPID signing algorithm 

                - ECDSA with wNAF

37 signatures with HNP to recover the key in 4.5 seconds 

3 signatures with EHNP to recover the key in 5 days

16

CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache attacks, with Fergus Dall, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi and Yuval Yarom, at  CHES 2018

A Tale of Three Signatures: practical attack of ECDSA with wNAF, with Cécile Pierrot and Rémi Piau, at  Africacrypt 2020



Attacking EPID signing algorithm
37 signatures with HNP to recover the key in 4.5 seconds 

17

CVE: Common Vulnerabilities and Exposures



Attacking the primitive

Hardness of DLP for 𝔽pn
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The discrete logarithm problem over finite fields

What group  should be considered?G • Prime finite fields  

• Finite fields  

• Elliptic curves over finite fields  

• Genus 2 hyperelliptic curves

𝔽×
p

𝔽×
pn

ℰ(𝔽p)
(ℤ/Nℤ, + )

Definition: Given a finite cyclic group  of order , a generator  and 
some element , find the element  such that 

G n g ∈ G
h ∈ G x ∈ [0,n) gx = h .
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Evaluating the hardness of DLP over 𝔽pn

•Many different algorithms to solve DLP in . 

•Their complexities depend on the relation between the characteristic  and the extension degree .

𝔽pn

p n

A useful notation: the L-notation Lpn(α, c) = exp((c + o(1))log(pn)αlog log(pn)1−α)

for  and  0 ⩽ α ⩽ 1 c > 0.

For complexities:  

• When , polynomial-time 

• When exponential-time

α → 0 : exp(log log pn) ≈ log pn

α → 1 : pn,
In the middle: subexponential-time
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Finite field  with 𝔽pn p = Lpn(α, c)

Three families of finite fields

• Different algorithms are used in the different areas. 

• Algorithms don’t have the same complexity in each area.

22
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ar

y

Seco
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dary

What are these algorithms?

They all come from a family known as index calculus algorithms.

Example:  n ≈ (log p)2
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Index calculus algorithms

Consider a finite field  

Factor basis: small set of small elements 

Three main steps: 

• Relation collection: find relations between the elements of . 

• Linear algebra: solve a system of linear equations where the unknowns are the discrete logarithms of the 
elements of . 

• Individual logarithm/Descent: for a target element  , compute the discrete logarithm of 

𝔽pn

ℱ =

ℱ

ℱ

h ∈ 𝔽×
pn h .

24



A lot of algorithms
• Small characteristics: Quasi-Polynomial algorithms [BGJT14, KW19] (with only a descent step) and 

Function Field Sieve [Adl94] 

• Medium and large characteristics: Number Field Sieve (NFS) [Gor93] and its variants

We focus on medium and large characteristic finite fields. 

Why?   

Finite fields used in practice for example  for                            
MNT-6 elliptic curves in zk-SNARKS.

𝔽p6

log log p

log n

Small char

Medium char

Large char

p = Lpn(2/3)

p = Lpn(1/3)
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[BGJT14]: R. Barbulescu, P. Gaudry, A. Joux, E. Thomé,  A heuristic quasi-polynomial time algorithm for discrete logarithm in finite fields of small characteristics. Eurocrypt’14

[Adl94]: L. Adleman, The Function Field Sieve. ANTS’94

[KW19]: T. Kleinjung, B. Wesolowski, Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic. 2019

[Gor98]: D. Gordon, Discrete Logarithms in GF(P) Using the Number Field Sieve. Journal on Discrete Mathematics’93
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Back to the hardness of DLP on 𝔽pn

Two ways of evaluating the hardness of DLP: 

1. Study the complexities of these 
algorithms.

2. Perform record computations.

0
1
3

2
3 1

↵

Small char Medium char Large char

F230750 30750 QP 2019 [GKL+20]

F33054 4841 QP 2016 [ACMM+18]
Fp50 1051 FFS 2020 [MSST20]

Fp6 521 TNFS 2021 this thesis

Fp6 423 NFS-HD 2020 [MR21]

Fp 795 NFS 2020 [BGG+20]

Fp6 422 NFS-HD 2016 [GGMT17]

Fp5 324 NFS-HD 2016 [GGM17]

Fp 1024 SNFS 2016 [FGHT17]

Fp3 593 NFS 2016 [Gré16]

Fp 768 NFS 2016 [KDL+17]

Fp3 508 NFS 2016 [GMT16]

Lpn(1/3,c)

26

Specificity Algorithm Medium characteristic 2nd boundary Large characteristic
None NFS 96 48 64

MNFS 89.45 45.00 61.93
TNFS – – 64
MTNFS – – 61.93

Composite n exTNFS 48 – –
MexTNFS 45.00 – –

Special p SNFS 64
�
�+1
�

�
? 32

STNFS – – 32
Composite n and special p SexTNFS 32 ? 32



In this thesis
1. We studied the asymptotic complexity of all these variants at the first boundary case: .p = Lpn(1/3,c)

One conclusion from this work: estimates for 128-bit security and asymptotic analysis do not match.

2. We ran large-scale experiments with the variant TNFS. 
27

https://members.loria.fr/AGuillevic/pairing-friendly-curves/#pairing-friendly-curves-at-the-128-bit-security-level
Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields, with Pierrick Gaudry and Cécile Pierrot, at Crypto 2020



Why do we do record computations?

It is important to choose the right key size.

•Too large: needlessly expensive computations 

•Too small: insecure

Running-time of discrete logarithm algorithms is hard to predict. 

Record computations provide information for assessing key lifetime.

28



A first record computation with exTNFS [KB16]
• Why did we choose exTNFS?

• Main difficulty: relation collection in dimension > 2.

n = ηκ

𝔽pn = 𝔽pηκ = 𝔽Pκ

[KB16]: T. Kim, R. Barbulescu, Extended tower number field sieve. Crypto’16 29

Specificity Algorithm Medium characteristic 2nd boundary Large characteristic
None NFS 96 48 64
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Special p SNFS 64
�
�+1
�

�
? 32

STNFS – – 32
Composite n and special p SexTNFS 32 ? 32



Collecting relations in TNFS

• Relation collection: find relations between the elements of . ℱ

More precisely, what does this mean? What is a relation?       Who is  ?ℱ

For TNFS:   

In our computation: 

•  

•  

•

R = ℤ[ι]/h(ι)

n = 6 = 3 × 2

deg h = η = 3

h = ι3 − ι + 1

R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

(R/pR)[X]/(aX2 + bX + c) ⇠= Fp6

30



Collecting relations in TNFS

• Relation collection: find relations between the elements of . ℱ

More precisely, what does this mean? What is a relation?       Who is  ?ℱ

For TNFS:  

In our computation: 

•  

•  

•

R = ℤ[ι]/h(ι)

n = 6 = 3 × 2

deg h = η = 3

h = ι3 − ι + 1

31

R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

(R/pR)[X]/(aX2 + bX + c) ⇠= Fp6

X 7!↵1 X 7!↵2
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R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

Fp3 [X]/(aX2 + bX + c) ⇠= Fp6

(mod p,aX2+bX+c) (mod p)
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Collecting relations in TNFS: what is a relation?

ϕ(ι, X) = a(ι) − b(ι)X ∈

ϕ(ι, α1) = a(ι) − b(ι)α1

Equality in finite field = Relation
Test  for B-smoothness:N(ϕ(ι, α1))

prime factors smaller than B

R = ℤ[ι]/(ι3 − ι + 1)
R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

Fp6
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Collecting relations in TNFS: what is a relation?

   “ = “   ∏𝔭ei
i ∏𝔮 fj

j

R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

Fp6

Who is  ?ℱ
Prime ideals of small norm in the ring of 
integers of the intermediate number 
fields 

• Relation collection: find relations between the elements of . ℱ
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Collecting relations in TNFS: what is a relation?

R [X]

K1 � R [X] /(X4 + 1) K2 � R [X] /(aX2 + bX + c)

Fp6

   “ = “   ∑ ei log 𝔭i ∑ fj log 𝔮j Virtual logarithms!

And to solve a linear system …
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Relation collection looks for a set of linear polynomials ϕ(ι, X) = a(ι) − b(ι)X ∈ R[X]

1. with bounded coefficients 

2. such that  is B-smoothNi(a(ι) − b(ι)αi)

Collecting relations in TNFS

Concretely, let: a(ι) = a0 + a1ι + a2ι2

b(ι) = b0 + b1ι + b2ι2

Goal: find vectors     such that  c = (a0, a1, a2, b0, b1, b2) ∈ ℤ6

 where  is known as the sieving region.c ∈ 𝒮 𝒮

Norms divisible only by primes smaller than B: 
intersection of suitably constructed lattices c ∈ ℒ

37



A new sieving region
Goal: find c ∈ 𝒮 ∩ ℒ

What is the dimension of ?𝒮           d = 2η = 6

• For NFS in dimension 2, we look for : Franke-Kleinjung’s algorithm (2005) 

• For NFS in dimension > 2:  

                            - Grémy’s transition-vector algorithm (2017) 

                            - McGuire and Robinson’s hyperplane enumeration (2020)

(a, b) ∈ ℤ2

They all consider: -rectangle𝒮 = d

38[MC20], sieving in dimension 3

In previous works:



A new sieving region
Goal: find c ∈ 𝒮 ∩ ℒ

What is the dimension of ?𝒮           d = 2η = 6

•For NFS in dimension 2, we look for : Franke-Kleinjung’s algorithm (2005) 

•For NFS in dimension > 2:  

                            - Grémy’s transition-vector algorithm (2017) 

                            - McGuire and Robinson’s hyperplane enumeration (2020)

(a, b) ∈ ℤ2

They all consider: -rectangle𝒮 = d

39

In previous works:

We look at TNFS so dimension > 2 (since )  and -sphere   ( -norm).η ≥ 2 𝒮 = 6 ℓ2



Why do we choose a -sphere?d

The norm for   is greater than 
the norm for .

c′� ∈ C∖Sd(R)
c ∈ Sd(R)

When :d → ∞

Assumption: size of norms depends only on size of 
vector coordinates.

Sd(R)
C

Conclusion: choosing  leads to smaller norms.Sd(R)

Difference in norms increases!

40



Enumerating in 𝒮 ∩ ℒ

• Concretely what is ? ℒ

• The outputs of the enumeration are thus …

A lattice that describes the divisibility of the ideals by an ideal , known as a special-  
ideal and a prime ideal  in the intermediate number fields.

𝔔 q
𝔭

…vectors corresponding to  pairs whose norms are divisible by  and .(a, b) N(𝔔) N(𝔭)

41

for many 𝔭′�s

Why? high probability of B-smoothness



• Input: a lattice basis  

• Output: shortest non-zero lattice vector

b1, ⋯, bd

Schnorr-Euchner’s enumeration [SE94]

Idea: 

1. Construct an enumeration tree 

2. Consider projections of the lattice 

3. At each level of the tree, enumerate in an interval 

4. Depth-first search in the tree 
[SE94]: C-P. Schnorr, M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Math. Program.’94
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• Input: a lattice basis  

• Output: vectors  such that 

b1, ⋯, b6

c = ∑ vibi | |c | | ≤ R

Schnorr-Euchner’s enumeration [SE94]

Idea: 

1. Construct an enumeration tree 

2. Consider projections of the lattice 

3. Exhaustive search of the coefficients  vi

43



Adapting enumeration to TNFS

• We don’t want the shortest non-zero vector but all the vectors of norm smaller than a radius  

• We optimize the computation of the vector  by reducing the number of computations: 

                                                        with  

• This gives a improvement in our total sieving time.

R .

c

c =
t−1

∑
i=1

vibi + common_part common_part =
6

∑
i=t

vibi

10 %

44



Relation collection all together

⋮
Batch and  

ECM

potential relations 

-pairs with high  

probability  

for B-smoothness

(a, b)

Sieving
(enumeration)

(a1, b1)

(a2, b2)

∈ 𝒮

idea: find -
pairs in  intersect 
many lattices .

(a, b)
𝒮

ℒ𝔭

idea: test B-smoothness 
of the potential 
relations

⟺

doubly B-
smooth 

elements

relations

Remove duplicates
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Removing duplicates

What is a duplicate relation?

Definition: A duplicate relation refers to a pair  such that there exists 
another pair  that leads to the same relation.

(a, b)
(a′�, b′�)

Are they common? Yes !  

Three types of duplicates: 1. Special- -duplicates 

2. -unit-duplicates 

3. -duplicates

q

Kh

ζ2

≈ 30 %

{≈ 54 %
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Removing duplicates

What is a duplicate relation?

Definition: A duplicate relation refers to a pair  such that there exists 
another pair  that leads to the same relation.

(a, b)
(a′�, b′�)

Three types of duplicates: 1. Special- -duplicates 

2. -unit-duplicates 

3. -duplicates

q

Kh

ζ2
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In NFS:
units: , {−1,1} a > 0.

gcd(a, b) =? 1



Identifying and removing duplicates
We provide a new method to identify and remove duplicates in the context of TNFS.

1. -unit-duplicates 

2. -duplicates

Kh

ζ2

a′� = ua, b′� = ub

a′� = λa, b′� = λb

for u ∈ O×
Kh

for λ ∈ OKh

Identification: compute  and store  in a hash table.k =
a
b

(mod h) ∈ Kh k

Warning 1: we want to keep the smallest pair!

48



Keeping a primitive pair

In our work: new algorithm for -duplicates based on a gcd computation of norms.ζ2

Warning 2: it doesn't work for -unit-duplicates! Kh

Idea: check if  gcd(N1(a, b), N2(a, b)) =? 1
Input: -pair 

Output: primitive -pair

(a, b)

(a, b)

Why? keeping   extra ideals in the prime ideal decomposition  extra coefficients in the matrix(λa, λb) ⇒ ⇒

49



What we needed for a record computation

• A fast sieving algorithm in dimension > 2. 

• Identifying and removing duplicate relations. 

• Adapting Schirokauer maps (virtual logarithms) to TNFS context. 

• Glue-code to branch into CADO-NFS. 

• A nice target:  .𝔽p6

50grvingt

in theory…

in practice…



𝔽p6
87Our 521-bit record computation

Total computation time (core hours):

Focus on relation collection:

[GGMT17]: L. Grémy, A. Guillevic, F. Morain, E. Thomé, Computing discrete logarithm in Fp6. Sac’17
[MR21]: G. McGuire, O. Robinson, Lattice Sieving in three dimensions for discrete log in medium characteristic. Journal of mathematical cryptology’21 51
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A discrete logarithm

target = (31415926535897932384626433 + 83279502884197169399375105ι
+82097494459230781640628620ι2) + x(89986280348253421170679821
+48086513282306647093844609ι + 55058223172535940812848111ι2)

Finite field:  with 87-bit prime , generator 𝔽p6 p g = x + ι

log(target) = 7627280816875322297766747970138378530353852976315498
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Summary of contributions

53

How can we assess the security of protocols in which a modular exponentiation 
involving a secret exponent is performed?

• Looking at implementation vulnerabilities during fast exponentiation. 

• Estimate the hardness of DLP in the groups considered by the protocols. 

Asymptotic complexity analysis for pairing-related finite fields
First implementation of the variant TNFS and record-computation

Summary of key recovery methods from partial information

Two concrete attacks on signing algorithms using lattice techniques and partial information



Perspectives

• Using Galois automorphisms to improve sieving 
and linear algebra. 

• A new target  and sieving in dimension 8. 

• Towards the implementation of other variants: 
considering Multiple NFS?

𝔽p12
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Concerning DLP:

Concerning key recovery methods:

• Recoving RSA private key  from MSB of .d d

Thank you for your attention!



Additional slides



Related publications
1. Hardness of DLP for 


- Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields, with Pierrick Gaudry and Cécile 
Pierrot, at Crypto 2020 
- Lattice enumeration for Tower NFS: a 521-bit discrete logarithm computation, with Pierrick Gaudry and Cécile Pierrot, 
submitted


2. Implementation vulnerabilities


- Recovering cryptographic keys from partial information, by example, with Nadia Heninger, Eprint 2020/1507

- CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache attacks, with Fergus Dall, Thomas 
Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi and Yuval Yarom, at CHES 2018 
- A Tale of Three Signatures: practical attack of ECDSA with wNAF, with Cécile Pierrot and Rémi Piau, at Africacrypt 2020

𝔽pn
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A discrete logarithm (in more details)

target = (31415926535897932384626433 + 83279502884197169399375105ι
+82097494459230781640628620ι2) + x(89986280348253421170679821
+48086513282306647093844609ι + 55058223172535940812848111ι2)

 (87-bit prime)p = 0x6fb96ccdf61c1ea3582e57 

log(target) = 7627280816875322297766747970138378530353852976315498

n = 6

𝔽p6 = 𝔽p3[x]/(x2 + 64417723306991464419622353x + 1)

target = a(ι) + xb(ι) ∈ 𝔽p6 with:  of degree 2 and coefficients a(ι), b(ι) < p .

generator =  x + ι

Verification:  (x + ι)log(target) = target (mod ℓ-th powers)

Irreducible 
factor mod p, 
here f2



Choice of subgroup
Pohlig-Hellman: Initial target: 𝔽p6 Prime order subgroup of order ℓ |p6 − 1

We have the following factorisation:   p6 − 1 = (p − 1)(p + 1)(p2 + p + 1)(p2 − p + 1)

• 


• 


• 


•  6th-cyclotomic subgroup

p − 1 = |𝔽×
p |

p + 1 = |𝔽×
p2 | / |𝔽×

p |

p2 + p + 1 = |𝔽×
p3 | / |𝔽×

p |

p2 − p + 1 :

If  and  are of order     NFS in  of 87 bitsg h ℓ |p − 1 ⇒ g, h ∈ 𝔽×
p ⇒ 𝔽p

If  and  are of order     NFS in  of 175 bitsg h ℓ |p + 1 ⇒ g, h ∈ 𝔽×
p2 ⇒ 𝔽p2

If  and  are of order     NFS in  
of 261 bits

g h ℓ |p2 + p + 1 ⇒ g, h ∈ 𝔽×
p3 ⇒ 𝔽p3

Here, we can’t go in a smaller subgroup…

Attention: it is not the largest subgroup! 



Multiplicative group of a finite field
• The non-zero elements of a finite field form a multiplicative group.  

• This group is cyclic, so all non-zero elements can be expressed as powers of a single 
element called a primitive element of the field.

Example 1: prime order finite fields:  

                      multiplicative group:         =   

 

𝔽p ≅ ℤ/pℤ

𝔽×
p = {1,2,⋯, p − 1} 𝔽p∖{0}

Example 2: non-prime order finite fields:  

                       —-> elements are polynomials over  whose degree is less than . 

                      multiplicative group:          

 

𝔽pn ≅ 𝔽p[X]/(P)

𝔽p n

𝔽×
pn = {invertible polynomials} = 𝔽pn∖{0}

https://en.wikipedia.org/wiki/Multiplicative_group
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Primitive_element_(finite_field)


Number field vs Function fields

Number field: Function field:
Finite extension of ℚ Finite extension of 𝔽p(ι)

K = ℚ[x]/( f ) K = 𝔽p(ι)[x]/( f )

ℚ = {p/q : p, q integers} 𝔽p(ι) = {p(ι)/q(ι) : p(ι), q(ι) ∈ 𝔽p[ι]}

Example: f = x2 − d
K = {x + y d : x, y ∈ ℚ}

Example: f = x2 − (ι3 + 2ι − 3)
K = {x0 + x1 ι3 + 2ι − 3 : x0, x1 ∈ 𝔽p(ι)}

Factor basis: prime ideals in 𝒪K Factor basis: prime ideals in 𝒪K
B-smoothness: compute norm of ideal = integer              
(from a resultant)

B-smoothness: compute norm of ideal = 
univariate polynomial (from a bivariate 
resultant)



Cryptographic pairings

A bilinear map e : 𝔾1 × 𝔾2 → 𝔾T

For cryptography e : ℰ(𝔽p) × ℰ(𝔽pk) → 𝔽pk

: embedding degreek

P

Q

e(P, Q)

Pairing-friendly curves
Elliptic curves for which the pairing is efficiently computable 

—> it contains a subgroup of order r whose embedding degree k is not too large, which means that 
computations in the field  are feasible.𝔽pk

Example: BN curves, BLS curves



Security of pairing-friendly curves

The security of pairing-friendly curves is evaluated by the hardness of DLP over 
and .𝔾1, 𝔾2 𝔾T

Over elliptic curves: square-root complexity  𝒪( r)
Over finite fields: cost of computing discrete logs in  : complexity of exTNFS ! 𝔽pk

For 128-bit level of security:

Menezes, Sarkar, Singh [MSS17]: minimum bit length of p of BN curves is 383 bits and for BLS12 
curves is 384 bits.

For 256-bit level of security:

Kiyomura et al.  [KIK17]: minimum bit length of  of BLS48 curves as 27,410 bits, i.e., 572 bits of p. pk



Guillevic’s blogpost
https://members.loria.fr/AGuillevic/pairing-friendly-curves/#pairing-friendly-curves-at-the-128-bit-security-level

Barreto–Lynn–Scott BLS12-381: 

•  

• : 381 bits 

• : 4569 bits 

k = 12

p

pk

Barreto–Lynn–Scott BLS12-440: 

•  

• : 440 bits 

• : 5280 bits 

k = 12

p

pk

Efficient pairing: “Conservative” pairing:



Examples: implementations of pairing-friendly curves

•Zcash: BLS12-381


•Ethereum 2.0: BLS12-381, BN curves with 254 bits of p (CurveFp254BNb) and 
382 bits of p (CurveFp382_1 and CurveFp382_2)



Schnorr-Euchner’s enumeration

Internal node corresponds to: 

πk(c) =
d

∑
j=k

vj +
d

∑
i=j+1

(μi,jvi)b*j

Leaf : k = 1

Level k = i

…

IF | |πk(c) | | ≥ R

Ignore the subtree

Go up one level and vary vi+1

Example: for k =2 

π2(c) = − b*2 + 3b*3 − 5b*4

Example: now k =3 

 π3(c) = 3b*3 − 5b*4

π3(c′�) = v3b*3 − 5b*4

We want  such that c =
d

∑
i=1

vibi | |c | | ≤ R



More precisely …

Leaf : k = 1

Internal node corresponds to: 

πk(c) =
d

∑
j=k

vj +
d

∑
i=j+1

(μi,jvi)b*jLevel k = i

…

IF | |πk(c) | | ≤ R

Explore the subtree and vary vi−1

Leaves: all vectors  such that c =
d

∑
i=1

vibi | |c | | ≤ R

Exhaustive search of all coefficients  for vi i = 1,⋯, d



Relation collection all together
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Keeping a primitive pair: algorithm

We provide an algorithm for -duplicates based on a gcd computation that takes an -pair and 
transforms it into its primitive version.

ζ2 (a, b)

Warning 3: it doesn't work for -unit-duplicates! Kh

Idea: check if  gcd(N1(a, b), N2(a, b)) =? 1

Yes: the pair is primitive, we keep it. 

No: for each prime ℓ | gcd(N1(a, b), N2(a, b))

Find  such that  

Recompute 

β ∈ OKh
a/β, b/β ∈ OKh

gcd(N1(a/β, b/β), N2(a/β, b/β))

Warning 2: doesn’t necessarily exist 



From JP Aumasson





“In 2023, we will debut the 1,121-qubit IBM Quantum Condor processor…”

“as we explore realms even further beyond the thousand qubit mark, today’s commercial dilution refrigerators 
will no longer be capable of effectively cooling and isolating such potentially large, complex devices.”

“super-fridge”
Jay Gambetta 
IBM Fellow and Vice President, IBM Quantum 

https://www.ibm.com/blogs/research/author/jaygambetta/

