Discrete Logarithm Cryptanalyses:

Number Field Sieve and Lattice Tools for Side-Channel Attacks
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What? Why? Where? Cryptography ...

Secure communication . \ Cryptog raphic pI’OtOCO‘S for:
\\ ) l] : . e :
- .4 e Confidentiality (encryption schemes)
® Authentication and non-repudiation (signature schemes)
Q f@ ® Integrity and validity of data (hash functions)
Ll
WV . .

Favesdropper



Hard problems for Cryptography

Use (hopefully) intractable problems to construct cryptographic primitives.

Start from...

¢ factorisation

e discrete Llogarithm

¢ lattice probi.ems

) Lsegemv prabi.ems

| ... ko obtain:

© encryption schemes
¢ sighature schemes

¢ hash functions
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What is a discrete logarithm?

Definition: Given a finite cyclic group G of order i, a generator ¢ € G and some
element 4 € G, the discrete logarithm of /2 in base g is the elementx € [0,n)
suchthatg™ = h.

1
Examp\e; G=127%8=3,

=3 (mod 7)
9=2 (mod 7)
=27=6 (mod 7)

gl
g2
g3

5N\ The discrete logarithm of /2 in base g is 3.



The discrete logarithm problem (DLP)

Definition: Given a finite cyclic group G of order n, a generator g € G and
some element i € G, find the elementx € [0,n) suchthat g* = h.

Computing the inverse, a modular exponentiation is easy: g =88 "8

algorithms in O(log(x)) I

Solving DLP can be hard (depending on the group G): h=g-g---g




Motivation: why do we care about modular exponentiation?

Many protocols use modular exponentiation where the exponent is a secret.

Example 1: Diffie-Hellman key exchange [DH76]

- . a b
® PUb‘IC data° g9 g y g E G Ephemeral Diffie Hellman
|
Technical Details v
. ~ab
® Shared key g E G Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256, 128 bit keys, TLS 1.2)

Example 2: pairing-based protocols

Security based on assumptions that

e |dentity-based tion/signature schemes [BFO1] [CCO3
PIHRYDASEE ETEYPHONISIINATIrE [ ) | become false if DLP is broken.

e Short signature schemes (eg, BLS signatures [BLS01])

[DH76]: W. Diffie, M. Hellman, New directions in cryptography. Trans. Info. Theory, 1976 [CCO3]: J. Cha, J. Cheon, An identity-based signature from gap Diffie-Hellman groups. PKC'03
[BFO1]: D. Boneh, M. Franklin, Identity-based encryption from Weil pairing. Crypto'01 [BLSO1]: D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. Asiacrypt'0



In my work

How can we assess the security of protocols in which a modular exponentiation
involving a secret exponent is performed?

® fstimate the hardness of DLP in the groups considered by the protocols.

® |ook at implementation vulnerabilities during fast exponentiation.



An example: EPID protocol in Intel SGX

e \What is EPID? a protocol to allow remote attestation of a hardware platform without compromising the
device's identity.

eThe protocol includes a signing algorithm that uses pairings.

-secret key includes the element [ €p Z,
eHow can we recover f 7
-During the protocol, consider a random secretnonce r € Z,

- Compute an exponentiation X"

- Outputs the element s «— r+ ¢f (c = hash of known values)



How can we recover the secret / ?

Sinces « r+cf, ifwerecoverr,wedirectly get f.

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).

If we have as target X" :
1. Solve DLP to find exponent 7 in 3072-bit finite field [ .- .

2. Look at implementation vulnerabilities during the computation of X"

10



Thesis contributions

Estimating the security
of discrete logarithm-
based protocols.

\

g Hardness of
DLP for Fpn.
_

——»

Chapter 3: asymptotic complexities
for pairing-relevant finite fields.

Chapter 4: lattice enumeration for
fast relation collection in TNFS.

Chapter 5: 521-bit F, ;s record com-
putation with TNFS.

Implementation
vulnerabilities.

Chapter 6: key recovery methods
with partial information.

Chapter 7: attacking EPID proto-
col in SGX.

Chapter 8: attacking ECDSA with
wNAF form.

11



Implementation vulnerabilities

Exploiting leakage from side-channels



How can we recover the secret / in EPID ?

Since s < 1+ cf, ifwerecoverr,wedirectly get f.

The protocol uses a 256-bit elliptic curve Fp256BN (embedding degree 12).

If we have as target X" :

1.-Setve-DEP-to-Hnd-expenentr 30/ 2-bitfnite feteH -

2. Look at implementation vulnerabilities during the computation of X"

Recovering partial information on r is enough to obtain f .

13



What is partial information and where does it come from?

Known bits

Most significant bits _ Least significant bits

1. Side-channel attacks, in particular cache attacks.
2. Many microarchitectural side-channel attacks use variations in execution time as the source of leakage.

3. Fast modular exponentiation algorithm are rarely constant-time !

In this thesis, we focus on how to what to do with the leaked information.

14



Key recovery methods

| have obtained the following type of incomplete information
about the secret key. Does it allow me to efficiently recover
the rest of the key?

Methods depend on:

® algorithm considered

e nature of the information leaked

Recovering cryptographic keys from partial information, by example, with Nadia Heninger, Eprint 2020/1507

Scheme

Secret information

Bits known

Technique

RSA p > 50% most significant - Coppersmith’s method
bits

RSA p > 50% least significant - Coppersmith’s method
bits

RSA p middle bits - Multivariate Coppersmith

RSA p multiple chunks of bits :.:.I Multivariate Coppersmith

RSA > loglog N chunks of p | IJI Open problem

RSA d (mod p— 1) MSBs - Coppersmith’s method

RSA d (mod p — 1) LSBs - Coppersmith’s method

RSA d (mod p — 1) middle bits I Multivariate Coppersmith

RSA d (mod p—1) chunks of bits :.]I Multivariate Coppersmith

RSA d most significant bits - Not possible

RSA d > 25% least significant - Coppersmith’s method
bits

RSA > 50% random bits of p and II]][]HII]]I |m Ill Branch and prune
q

RSA > 50% of bits of d (mod p— Hﬂ]ﬂmﬂ]”ﬂ" HI Branch and prune
1) and d (mod g — 1) [ﬂ]][l][ﬂ"]][[["[[[ﬂ[[m

(EC)DSA MSBs of signature nonces . Hidden Number Problem

(EC)DSA LSBs of signature nonces . Hidden Number Problem

(EC)DSA Middle bits of signature I Hidden Number Problem
nonces .

(EC)DSA Chunks of bits of signature I I I Extended HNP
nonces :I:I l

EC(DSA) Many bits of nonce |I]]]I|][[II]]| |m "l Scales poorly

Diffie-Hellman

Most bits of

shared secret ¢

significant
ab

Hidden Number Problem

Diffie-Hellman
Diffie-Hellman

Secret exponent a
Chunks of bits of secret ex-
ponent

-

-

Pollard kangaroo method

Open problem
15



The (Extended) Hidden Number Problem

MSBs of signature nonces

LSBs of signature nonces

Middle bits of signature
nonces

Hidden Number Problem

Hidden Number Problem

Hidden Number Problem

Chunks of bits of signature
nonces

Extended HNP

Many bits of nonce

Scales poorly

In my work: oo

(EC)DSA
® [attice-based approach -
e Optimizing the lattice construction (EC)DSA
® Error handling EC(DSA)

Diffie-Hellman

Most significant bits of
shared secret g@°

AR
_
H

Hidden Number Problem

e Concrete attacks:

-EPID signing algorithm 37 signatures with HNP to recover the key in 4.5 seconds

- ECDSA with wNAF 3 signatures with EHNP to recover the key in 5 days

CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache attacks, with Fergus Dall, Thomas Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi and Yuval Yarom, at CHES 2018

ATale of Three Signatures: practical attack of ECDSA with wNAF, with Cécile Pierrot and Rémi Piau, at Africacrypt 2020

16



CVE: Common Vulnerabilities and Exposures

Attacking EPID signing algorithm

37 signatures with HNP to recover the key in 4.5 seconds

AXCVE-2018-3691 Detail

Current Description

Some implementations in Intel Integrated Performance Primitives Cryptography Library before version 2018 U3.1 do not properly ensure
constant execution time.

= Hide Analysis Description

Analysis Description

Some implementations in Intel Integrated Performance Primitives Cryptography Library before version 2018 U3.1 do not properly ensure
constant execution time.

Seve nty CVSS Version 3.x CVSS Version 2.0

CVSS 3.x Severity and Metrics:

m NIST: NVD Base Score: | 4.7 MEDIUM Vector: CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N

17



Attacking the primitive

Hardness of DLP for [Fpn



The discrete logarithm problem over finite fields

Definition: Given a finite cyclic group G of order n, a generator g € G and
some element 4 € G, find the elementx € [0,n) suchthatg* = h.

What group G should be considered?

<Z)(, +)

e Prime finite fields [F;;

o o . X
e Finite fields [Fpn

o Elliptic curves over finite fields &([F))

® Genus 2 hyperelliptic curves

19
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Evaluating the hardness of DLP over [,

eMany difterent algorithms to solve DLP in [ ..

eTheir complexities depend on the relation between the characteristic p and the extension degree .

A useful notation: the L-notation Lpn(a, c) = exp((c + o(1))log(p™)*log log(p”)l_“)

forO<a<landc > 0.

For complexities:

e Whena — O : exp(loglog p™) =~ log p”, polynomial-time
In the middle: subexponential-time

21

e Whena — 1 : p”, exponential-time



Three families of finite fields

Finite field |, with p = L,,.(at, ¢)

First boundary Second boundary
0 % % Large char 1
| | | e
[F51024 Fp§05 Fpgé ¥ 1024

e Different algorithms are used in the different areas.

e Algorithms don't have the same complexity in each area.

22



What are these algorithms?

log 1 p=Lyn(1/3) Example:n ~ (log p)?

Quasi-Poly

NFS and variants
(with larger complexities)

p = Lyn (2/3)

oo Large char
0

&
%6600 NFS and variants
(with smaller complexities)

> log log p

They all come from a family known as index calculus algorithms.

23



Index calculus algorithms

Consider a finite field [Fpn

Factor basis: & = small set of small elements

Three main steps:

e Relation collection: find relations between the elements of .

® |inearalgebra: solve a system of linear equations where the unknowns are the discrete logarithms of the
elements of F.

e [ndividual logarithm/Descent: for a target element h &€ [F;n,compute the discrete logarithm of /1 .

24



A lot of algorithms

® Small characteristics: Quasi-Polynomial algorithms [BGJT14, KW19] (with only a descent step) and
Function Field Sieve [AdI94]

® edium and large characteristics: Number Field Sieve (NFS) [Gor93] and its variants

logn p= Ly (1/3)

We focus on medium and large characteristic finite fields.

uasi-Pol
Why? ey
Finite fields used in practice for example [ 6 for N p=Lpn(2/3)
MNT-6 elliptic curves in zk-SNARKS. S

& (¥ Targe char
A/

NF'S and variants

[Ad|94]: L. Adleman, The Function Field Sieve. ANTS'94 \with smaller complexitif

(Gor98]: D. Gordon, Discrete Logarithms in GF(P) Using the Number Field Sieve. Journal on Discrete Mathematics'93

BGJT14]: R. Barbulescu, P. Gaudry, A. Joux, E. Thomé, A heuristic quasi-polynomial time algorithm for discrete logarithm in finite fields of small characteristics. Eurocrypt'14
KW19]: T. Kleinjung, B. Wesolowski, Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic. 2019



Back to the hardness of DLP on F

Two ways of evaluating the hardness of DLP:

Specificity Algorithm Medium characteristic 2nd boundary Large characteristic
- None NES 96 48 64
1. StUdy the comp\exmes of these MNFS 89.45 45.00 61.93
: TNFES — — 64
a‘gO”tth. MTNEFS - — 61.93
Composite n exTNF'S 48 — -
MexTNFES 45.00 - —
. A+1
L 1/3 C Special p SNE'S 64(7) * 32
P”( ,C) STNFS - - 32
Composite n and special p SexTNEF'S 32 * 32

F.e 521 TNFES 2021 this thesis
. F,e 423 NFS-HD 2020 [MR2I]
2. Perform record computations. F, 795 NFS 2020 [BGG 20
Fe 422 NFS-HD 2016 |GGMT17]|
Fs 324 NFS-HD 2016 [GGMI17]
F, 1024 SNFS 2016 [FGHT17]
Fos0750 30750 QP 2019 |GKL~+20| F. 1051 FFS 2020 [MSST20) F,s 593 NFS 2016 |Gré16]
Fazosa 4841 QP 2016 [ACMM-+18| b F, 768 NFS 2016 [KDL 17|

F. 508 NFS 2016 [GMT16]

-
T Wi
I
[—

Large char 26



In this thesis

1. We studied the asymptotic complexity of all these variants at the first boundary case: p = L,,.(1/3,c¢).

Complexity
a4l )

28|
2.6

2.4 -

~NFS-JLSV1
~NFS-JLSV2
~NFS-A
—~MNFS-JLSV1
—~MNFS-JLSV?2
—MNFS-A
exTNFS-B
—MexTNFS-B
SNFS-2
— SNFS-56
~SNFS-10

2.2 -

2-

1.8 -

VVVVVVVVVVVVVVVVVVVVVV

10 15 20

One conclusion from this work: estimates for 128-bit security and asymptotic analysis do not match.

2. We ran large-scale experiments with the variant TNFS.

Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields, with Pierrick Gaudry and Cécile Pierrot, at Crypto 2020

https://members.loria.fr/AGuillevic/pairing-friendly-curves/#pairing-friendly-curves-at-the-128-bit-security-level

vvvvvvv



Why do we do record computations?

ltis important to choose the right key size.

Agency Date Size of group Size of key
*Too large: needlessly expensive computations NIST | 2019-2030 2048 224
> 2030 3072 256
. ANSSI | 2021-2030 2048 200
*Too small: insecure ~ 2030 3072 200

Running-time of discrete logarithm algorithms is hard to predict.

Record computations provide information for assessing key lifetime.

28



® Why did we choose exTNFS?

A first record computation with exTNFS [KB16] |

n = nkK

_pn — [_pr]lc _PK
Specificity Algorithm  Medium characteristic 2nd boundary Large characteristic
None NES 96 ey 4.8 64
MNFS 89.45 45.00 61.93
TNF'S — — 64
MTNEFS — — 61.93
Composite n exTNFE'S 48 — —
MexTNES 45.00 - -
Special p SNES 64(%) * 32
STNES — — 32
Composite n and special p  SexTNFES 32 * 32

e Main difficulty: relation collection in dimension > 2.

[KB16]: T.Kim, R. Barbulescu, Extended tower number field sieve. Crypto'16

29



Collecting relations in TNFS

e Relation collection: find relations between the elements of &

More precisely, what does this mean?  What is a relation?

Who is & 7

ForTNES: R = Z[1]/h(1)

In our computation:

en=6=3X2

lQdeglfl:}/]:3

30



Collecting relations in TNFS

e Relation collection: find relations between the elements of &

More precisely, what does this mean? ~ What s a relation?  Whois & ?

For TNES: R = Z[1]/h(1)
|

In our computation:

en=6=3X2

lQdeglfl:}/]:3
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Collecting relations in TNFS

e Relation collection: find relations between the elements of &

More precisely, what does this mean?  What is a relation?

Who is & 7

For TNES: R = Z[11/h(1)
|

In our computation:

en=6=3X2

lQdeglfl:}/]:3

// \

K4 DR[X]/(X4—|—1

(mod p, aX2+bX—|—c m

32



Collecting relations in TNFS

e Relation collection: find relations between the elements of &

More precisely, what does this mean? ~ What s a relation?  Whois & ?

R[X]

For TNES: R = Z[11/h(1)
|

In our computation:

en=6=3X2

l0degh:;7:3

Ki o> RIX]/(x1+1) ( ) Ky O R[X] /(aX? +bX + 0

33



Collecting relations in TNFS: what is a relation?

R=7[]/G° -1+ 1)
d(1,X)=a() - b(1)X € R |X]

K1 O R[X] /(4 +1) Ky D R[X]/(aX?+bX + ¢)

p1 @) = a(t) — by

Test N(¢p(1, 1)) for B-smoothness:

Equality in finite field = Relation

— prime factors smaller than B

34



Collecting relations in TNFS: what is a relation?

e Relation collection: find relations between the elements of &

Who is & ?

€ u__u f
Prime ideals of small norm in the ring of HP,- = qu]
integers of the intermediate number

fields

35



Collecting relations in TNFS: what is a relation?

And to solve a linear system ...

Z e;logp, "=" Zf]-log q; Virtual logarithms!

36



Collecting relations in TNFS

Relation collection looks for a set of linear polynomials ¢, X) = a(t) — b(1)X € R[X]

1. with bounded coefficients c € & where & is known as the sieving region.

2.such that Ny(a(1) — b(D)a;) is B-smooth ——» Norms divisible only by primes smaller than B:

¢ € intersection of suitably constructed lattices £

Concretely, let: a(l) = ay + a1 + a,i*

b(l) — bo + bll + bzlz

Goal: find vectors ¢ = (ay, ay, a», by, by, by) € 79 such that

37



A new sieving region
Goal:findc € ¥ N L

What is the dimensionof 8? d =2n =6

In previous works:

e For NFS in dimension 2, we look for (a, b) € Z?: Franke-Kleinjung’s algorithm (2005)

e For NFS in dimension > 2:

- Grémy'’s transition-vector algorithm (2017)

- McGuire and Robinson’s hyperplane enumeration (2020)

They all consider: & = d-rectangle

[MC20], sieving in dimension 3 =

38



A new sieving region
Goal:findc € ¥ N L

What is the dimensionof 8? d =2n =6

In previous works:

eFor NFS in dimension 2, we look for (a, b) € Z*: Franke-Kleinjung's algorithm (2005)

oFor NFSin dimension > 2:

- Grémy'’s transition-vector algorithm (2017) .
-McGuire and Robinson’s hyperplane enumeration (2020)
They all consider: —=—d-reetangle o

We look at TNFS so dimension > 2 (sincep > 2) and & = 6-sphere (£,-norm).

39



Why do we choose a d-sphere?

Assumption: size of norms depends only on size of
vector coordinates.

The norm forc¢” € C\S,(R) is greater than
the normforc € S /(R).

Whend — o0o:

Difference in norms increases!

Conclusion: choosing S ,(R) leads to smaller norms.

C

40



Enumeratingin & N £

e Concretely what is £7

A lattice that describes the divisibility of the ideals by an ideal &, known as a special-g
ideal and a prime ideal p in the intermediate number fields.

3 for many p’s
® The outputs of the enumeration are thus ...

...vectors corresponding to (a, b) pairs whose norms are divisible by N(X3) and N(p).

Why? high probability of B-smoothness

41



Schnorr-Euchner’'s enumeration [SE94]

ma(c) = #b] + #b5 + b5 + *b;

k=4

® |nput: a lattice basisby, ---, b

® Qutput: shortest non-zero lattice vector

m3(c) = %+* 5 +xbs+xb)

dea: () @ k=3
1. Construct an enumeration tree ma(c) = b7 ++xb}++bi4+b
. . . k — 2

2. Consider projections of the lattice

3. At each level of the tree, enumerate in an interval () o ® k=1
C:bl —b2—|—b3—|—b4

4. Depth-first search in the tree

[SE94]: C-P. Schnorr, M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Math. Program.'94
42



Schnorr-Euchner’'s enumeration [SE94]

mi(c) = #b] + xb5 + x5 + b

® nput: a lattice basis by, -+, bg

e Output: vectors ¢ = Z vb;suchthat | |c|| < R k=4
m3(c) = b} + 4k +xbs++b)
|dea: < S k=3

1. Construct an enumeration tree

2. Consider projections of the lattice

3. Exhaustive search of the coefficients v,
c =b; — by + bs+ by

43



Adapting enumeration to TNFS

e \We don't want the shortest non-zero vector but all the vectors of norm smaller than a radius R .

e We optimize the computation of the vector ¢ by reducing the number of computations:

6

—1
C = Z v:b. + common_part with common_part = Z v:b,
i=1

1=t

e This givesa 10 % improvement in our total sieving time.

44



Relation collection all together

//
/

Remove duplicates

/ | \\ |
/ \
/ \
(ay, by)

Sieving
smooth
elements

—

[ potential relations |

(a, b)-pairs with high

cS / e probability relations

~ lidea:find (a, b)- !
pairsin & intersect |
many attices £y, "

' idea: test B-smoothness

} of the potential
| relations

doubly B-

45



Removing duplicates

What is a duplicate relation?

Definition: A duplicate relation refers to a pair (a, b) such that there exists
another pair (a’, b") that leads to the same relation.

Three types of duplicates: 1. Special-g-duplicates ~ 30 %

2. Ky -unit-duplicates
~ 54 %
3. &y-duplicates

Are they common?  Yes !

46



Removing duplicates

What is a duplicate relation?

Definition: A duplicate relation refers to a pair (a, b) such that there exists
another pair (a’, b") that leads to the same relation.

Three types of duplicates: 1. Special-g-duplicates
In NFS:

2. K -unit-duplicates units: {—1,1},a > 0.

3. Cr-duplicates gcd(a, b) =, 1

47



ldentifying and removing duplicates

We provide a new method to identify and remove duplicates in the context of TNFS.

1. Kj-unit-duplicates @’ = ua, b’ = ub foru € O

2.C5-duplicates  a'=4da,b"= ib ford € Ok

a
[dentification: compute k = 5 (mod h) € K, and store kin a hash table.

Warning 1: we want to keep the smallest pair!

48



Keeping a primitive pair

Why? keeping (Aa, Ab) = extra ideals in the prime ideal decomposition = extra coefficients in the matrix

In our work: new algorithm for {,-duplicates based on a gcd computation of norms.

Input: (a, b)-pair
dea: checkif gcd(N,(a, b), N,(a, b)) =, 1
Output: primitive (a, b)-pair

Warning 2: it doesn't work for K, -unit-duplicates!

49



® Afastsieving algorithm in dimension > 2.
® |dentifying and removing duplicate relations.

® Adapting Schirokauer maps (virtual logarithms) to TNFS context.

® Glue-code to branch into CADO-NFS.

® Anicetarget: [ 6.

|

in theory. ..

In practice... — grvingt



First boundary

Our 521-bit record computation

Second boundary

2

0 3 Large char 1
| | e
[F51024 Fp§05 Fpgé ¥ p 1024

Total computation time (core hours):

Focus on relation collection:

Relation Collection Linear algebra

Schirokauer maps

Descent | Overall time

23.300 1,403 10 55 24798
Parameters IGGMT17| | IMR21| | This work
Algorithm NFE'S NFES TNFS
Field size (bits) 422 423 H21
Sieving dimension 3 3 6
Sieving time 201,600 69,120 23,300

[GGMT17]: L. Grémy, A. Guillevic, F. Morain, E.Thomé, Computing discrete logarithm in Fp6. Sac'17
[MR21]: G. McGuire, 0. Robinson, Lattice Sieving in three dimensions for discrete log in medium characteristic. Journal of mathematical cryptology'21

51




A discrete logarithm

Finite field: [, with 87-bit prime p, generator g = x + 1

target = (31415926535897932384626433 + 83279502884197169399375105:
+82097494459230781640628620:%) + x(89986280348253421170679821
+48086513282306647093844609: + 550582231725359408128481111%)

log(target) = 7627280816875322297766747970138378530353852976315498

52



Summary of contributions

How can we assess the security of protocols in which a modular exponentiation
involving a secret exponent is performed?

® |ooking atimplementation vulnerabilities during fast exponentiation.

—  Summary of key recovery methods from partial information

— Two concrete attacks on signing algorithms using lattice techniques and partial information

® Estimate the hardness of DLP in the groups considered by the protocols.

—  Asymptotic complexity analysis for pairing-related finite fields

—  Firstimplementation of the variant TNFS and record-computation

53



Perspectives

Concerning DLP:

® Using Galois automorphisms to improve sieving
and linear algebra.

e Anew target -1 and sieving in dimension 8.

® Towards the implementation of other variants:
considering Multiple NFS? ‘e

Concerning key recovery methods:

e Recoving RSA private key d from MSB of d. < h
\




Additional slides



Related publications

1. Hardness of DLP for I]:pn

- Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields, with Pierrick Gaudry and Cécile
Pierrot, at Crypto 2020

- Lattice enumeration for Tower NFS: a 521-bit discrete logarithm computation, with Pierrick Gaudry and Cécile Pierrot,
submitted

2. Implementation vulnerabillities

- Recovering cryptographic keys from partial information, by example, with Nadia Heninger, Eprint 2020/1507

- CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache attacks, with Fergus Dall, Thomas
Eisenbarth, Daniel Genkin, Nadia Heninger, Ahmad Moghimi and Yuval Yarom, at CHES 2018

- A Tale of Three Signatures: practical attack of ECDSA with wNAF, with Cécile Pierrot and Rémi Piau, at Africacrypt 2020
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A discrete logarithm (in more details)

p = 0x6tb96ccdi61c1ea3582e57 (87-bitprime) n =6 .
rreducible

F o = o]/ (X2 + 64417723306991464419622353x + factor mod p,

P 1)// here 12
\

target = a(1) + xb(1) € F,c  with: a(2), b(2) of degree 2 and coefficients < p .

target = (31415926535897932384626433 + 83279502884197169399375103:
+82097494459230781640628620:) + x(89986280348253421170679821
+48086513282306647093844609: + 55058223172535940812848111:7)

generator = x + 1

log(target) = 7627280816875322297766747970138378530353852976315498

)log(target) _

Verification: (x + 1 = target (mod 7£-th powers)



Choice of subgroup

Pohlic

" -Hellman:
nitial target: [, ———————»

Prime order subgroup of order £ | p® — 1
We have the following factorisation: p® — 1 = (p — D(p + D(p* +p + D(p? —p + 1)

— | X . .
p—1=|F;| Ifgandhareoforder|p—1=g,h € ;= NFSin[F, of 87 bits

p+1= .-;2\/| M| ifgandhareoforderZ|p+ 1=>g,h € IF;Z:>NFSin F - 0f 175 bits

prHp+1= HF;;\/H:;\ fgand hareoforderZ |p*+p+1=>g,h € |]:;<3=>NFSinﬂ:p3
of 261 bits

on’? — p + 1 : 6th-cyclotomic subgroup ~ Here, we cant go in a smaller subgroup. ..

Attention: itis not the largest subgroup!



Multiplicative group of a finite field

* The non-zero elements of a finite field form a multiplicative group.

* This group is cyclic, so all non-zero elements can be expressed as powers of a single
element called a primitive element of the field.

Example 1: prime order finite fields: -, = Z/pZ
multiplicative group: [I:;< ={1,2,---,p—1}= [Fp\{O}

Example 2: non-prime order finite fields: [, = [,[X]/(P)

—> elements are polynomials over [, whose degree is less than 7.

multiplicative group: [, = {invertible polynomials} = [,,\ {0}


https://en.wikipedia.org/wiki/Multiplicative_group
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Primitive_element_(finite_field)

Number field vs Function fields

Number field: Function field:

Finite extension of (D Finite extension of [(2)

Q = {p/q : p,q integers; F,() = {p@/q(v) : p(1), q(1) € F 1]}

K = Q[x]/(f) K = F,(0)[x]/(f)

Fxample: f = x% — d Example: f = x* — (1° + 21 — 3)

K = {x+y\/21 x,y € Q} K = {x0+x1\/l3 +21 -3 1 xp,x; € 5,0}
Factor basis: prime idealsin O Factor basis: prime ideals in O

B-smoothness: compute norm of ideal = integer ~ B-smoothness: compute norm of ideal =
(from a resultant) univariate polynomial (from a bivariate
resultant)



Cryptographic pairings

Abilinearmape : G; X G, — G k

P
For cryptography e Qcif(J-p) X Céf(J—pk) — J—pk O e(P, Q)

k: embedding degree

Pairing-friendly curves

Elliptic curves for which the pairing is efficiently computable

—> it contains a subgroup of order r whose embedding degree k is not too large, which means that
computations in the field [ . are feasible.

Example: BN curves, BLS curves



Security of pairing-friendly curves

The security of pairing-friendly curves is evaluated by the hardness of DLP over

(,, G,and G-

Over elliptic curves: square-root complexity @(\/;)

Over finite fields: cost of computing discrete logs in [, : complexity of exTNFS |

For 128-bit level of security:

Menezes, Sarkar, Singh [MSS17]: minimum bit length of p of BN curves is 383 bits and for BLS12
curves is 384 bits.

For 256-bit level of security:
Kiyomura et al. [KIK17]: minimum bit length of p* of BLS48 curves as 27,410 bits, i.e., 572 bits of p.



Guillevic’s blogpost

https://members.loria.fr/AGuillevic/pairing-friendly-curves/#pairing-friendly-curves-at-the-128-bit-security-level

For efficient non-conservative pairings, choose BLS12-381 (or any other BLS12 curve or Fotiadis—-Martindale curve of

roughly 384 bits), for conservative but still efficient, choose a BLS12 or a Fotiadis-Martindale curve of 440 to 448 bits.

Efficient pairing: “Conservative” pairing:
Barreto-Lynn-Scott BLS12-381: Barreto-Lynn-Scott BLS12-440:
ok =12 ok =12

e p: 381 bits e p: 440 bits

o pk: 4569 bits o pX: 5280 bits



Examples: implementations of pairing-friendly curves

«/cash: BLS12-381

‘Ethereum 2.0: BLS12-381, BN curves with 254 bits of p (CurveFp254BNb) and
382 bits of p (CurveFp382_1 and CurveFp382_2)



Go up one level and vary v; 4

Schnorr-Euchner’'s enumeration

Example: now k =3

d
— 2h* — Sh
We want ¢ = 2 vb.suchthat | |c|| £ R m(c) = 3bY — Sb;
= 75(c’) = vb¥ — 5b
Level b = i Q Internal node corresponds to: IF ||z (c)|| = R
d d l
m(e) =) |+ D, (wwb
l J=k i=j+1 lgnore the subtree

leaf: k= 1 Q Example: fork =2
m(c) = — bik + 3b§I< — 5b;I<



More precisely ...

Internal node corresponds to:

d d
Level k — l Q ﬂk(C) — Z Vj + Z (//tl-,j\/l-)b;k IF ‘ ‘ﬂk(C) ‘ ‘ S R
l =k i=j+1 l
l Explore the subtree and vary v, _

Exhaustive search of all coefficients v fori = 1,---,d

leaf : k = 1 Q d

Leaves: all vectors ¢ = Z vb.suchthat | |c|| £ R
i=1



Relation collection all together

Algorithm 8 Relation collection for a given special-g with sieving, batch and ECM

Input: A prime ideal 9, a sieving region S

Output: A list of relations.

. Construct the lattice L5 and LLL-reduce it.

. for each prime ideal p in K; (or K5) up to pmax do
Construct the lattice Lq

Enumerate all vectors in Lo , N S.
For each vector enumerated, keep track of the size of the factors p with a sieving table.

For promising vectors, compute approximations of the norms Ny, Ny and identity sieve-survivors.
Remove duplicates.

Run batch algorithm with input the norms /N; and N5 of the sieve-survivors and primes up to ppatch.
Keep batch-survivors.

9: Run ECM on the batch-survivors.

10: return Vectors with doubly-B-smooth norms which give relations as selected by ECM.

DN IR UE A R O i v
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Keeping a primitive pair: algorithm

We provide an algorithm for {,-duplicates based on a gcd computation that takes an (a, b)-pair and
transforms it into its primitive version.

dea: checkif gcd(N,(a, b), N,(a, b)) =, 1
Yes: the pair is primitive, we keep it.
No: for each prime | gcd(V,(a, b), N,(a, b))
Find # € Othuch thata/f3, bl € OKh Warning 2: doesn't necessarily exist

Recompute gcd(N,(al/p, bl p), N,(al 5, bl p))

Warning 3: it doesn't work for K -unit-duplicates!



HOw many qubits In a
gquantum computer?

Log scale

In today's QC Hopes for the next 5 years  Needed to break crypto

From JP Aumasson



How many qublits In a
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Scaling IBM Quantum technology

IBM Q System One (Release

2019 2023 and beyond

27 Qubits 1.121 qubits Path to 1 million qubats

and beyond

<><><><><>m

“In 2023, we will debut the 1,121-qubit IBM Quantum Condor processor...”

“as we explore realms even further beyond the thousand qubit mark, today’s commercial dilution refrigerators
will no longer be capable of effectively cooling and isolating such potentially large, complex devices.”

/l . /I
Super frldge Jay Gambetta
IBM Fellow and Vice President, IBM Quantum


https://www.ibm.com/blogs/research/author/jaygambetta/

